Клиническое значение двухэнергетической рентгеновской компьютерной томографии в диагностике и лечении мочекаменной болезни


DOI: https://dx.doi.org/10.18565/urology.2018.1.143-149

Л.Б. Капанадзе, С.К. Терновой, В.И. Руденко, Н.С. Серова

1 Кафедра лучевой диагностики и лучевой терапии лечебного факультета ФГАОУ ВО «Первый МГМУ им. И. М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия; 2 Кафедра урологии ФГАОУ ВО «Первый МГМУ им. И. М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
Мочекаменная болезнь (МКБ) является одним из самых частых урологических заболеваний, которое встречается в современной популяции, обнаруживается не менее чем у 3% населения, причем в большинстве случаев у лиц наиболее трудоспособного возраста – 30–50 лет. В связи с высокой актуальностью заболевания разработка и модернизация современных методик диагностики приобретают огромную социальную значимость. За последние два десятилетия отмечаются революционные успехи в применении минимально инвазивных методов лечения МКБ. Тем не менее хирургическое вмешательство лишь избавляет от конечного результата длительного патологического процесса и не меняет его течения. Таким образом, возникает необходимость в детальном понимании этиологии, эпидемиологии и патогенеза МКБ. Ключевую роль в диагностике МКБ играют лучевые методы визуализации. Мультиспиральная компьютерная томография (МСКТ) является «золотым» стандартом в диагностике МКБ, позволяет получать информацию о размере, локализации и плотности конкремента. За последнее десятилетие в зарубежной и отечественной литературе широко обсуждаются вопросы применения в урологической практике одного из видов МСКТ – двухэнергетической компьютерной томографиии (ДЭКТ). Исследование одной из главных возможностей ДЭКТ – определение химического состава мочевых камней – продемонстрировало высокую диагностическую ценность метода, в том числе и в прогнозировании ведения пациентов с МКБ. Однако недостатки метода и отсутствие стандартизированных протоколов исследования оставляют широкое поле для дальнейших исследований. В настоящем научном обзоре представлены данные об особенностях использования ДЭКТ в диагностике МКБ.
Ключевые слова: мочекаменная болезнь, нефролитиаз, химический состав камня, компьютерная томография, двухэнергетическая компьютерная томография

Литература


1. Ramello A., Vitale C., Marangella M. Epidemiology of nephrolithiasis. J Nephrol. 2000;13Suppl 3:45–50.

2. Trinchieri A.C. et al. Epidemiology, in Stone Disease, Segura J.W., Khoury S., Pak C.Y., Preminger G.M., Tolley D. Eds. Health Publications, Paris, 2003.

3. Lopatkin N.A., Dzeranov N.K. 15 years of experience in the use of ESWL in the treatment of urolithiasis. Materialy Plenuma pravleniya Rossiiskogo obshchestva urologov. Sochi. 2003. C. 5–25. Russian (Лопаткин Н.А., Дзеранов Н.К. 15-ти летний опыт применения ДЛТ в лечении МКБ. Материалы Пленума правления Российского общества урологов. Сочи. 2003. C. 5–25).

4. Trapeznikova M.F., Dutov V.V. Modern aspects of nephrolithotripsy. Materialy Plenuma pravleniya Vserossiiskogo obshchestva urologov. Saratov. 1998. C. 335–336. Russian (Трапезникова М.Ф., Дутов В.В. Современные аспекты нефролитотрипсии. Материалы Пленума правления Всероссийского общества урологов. Саратов. 1998. C. 335–336).

5. Tiktinskii O.L., Aleksandrov V.P. Urolithiasis. SPb., Piter. 2000. 384 p. Russian (Тиктинский О.Л., Александров В.П. Мочекаменная болезнь. СПб.: Питер. 2000. 384 c.)

6. Wilson D.M. Clinical and laboratory approaches for evaluation of nephrolithiasis. J Urol. 1989;141:770–774.

7. Alyaev Yu.G., Rudenko V.I., Gazimiev M.-S.A. Urolithiasis. Actual problems of diagnosis and treatment choice. «Triada», Moskva. 2006. C. 10–16. Russian (Аляев Ю.Г., Руденко В.И., Газимиев М.-С.А. Мочекаменная болезнь. Актуальные вопросы диагностики и выбора метода лечения. «Триада», Москва. 2006. C. 10–16).

8. Konstantinova O.V., Shaderkina V.A. Epidemiological assessment of urolithiasis in outpatient urological practice. Eksperimental’naya i klinicheskaya urologiya. 2015;1:11–14. Russian (Константинова О.В., Шадеркина В.А. Эпидемиологическая оценка мочекаменной болезни в амбулаторной урологической практике. Экспериментальная и клиническая урология. 2015;1:11–14).

9. Urolithiasis. A modern view of the problem. Manual for doctors / Ed. by Yu.G. Alyaev, P.V. Glybochko. M.: Medforu. 2016. 148 p. Russian (Мочекаменная болезнь. Современный взгляд на проблему. Руководство для врачей / Под редакцией Ю.Г. Аляева, П.В. Глыбочко. М.: Медфору. 2016. 148 с.).

10. Ngo T.C., Assimos D.G. Uric acid nephrolithiasis: recent progress and future directions. Rev Urol. 2007;9:17–27.

11. Pittomvils G., Vandeursen H., Wevers M., et al. The influence of internal stone structure upon the fracture behaviour of urinary calculi. Ultrasound Med Biol. 1994;20: 80310.

12. Zhong P., Preminger G.M. Mechanisms of differing stone fragility in extracorporeal shockwave lithotripsy. J Endourol. 1994;(4):263–268.

13. Saw K.C., Lingeman J.E. Management of calyceal stones. AUA Update Series. 1999;20:154–159.

14. Dretler S.P. Stone fragility-a new therapeutic distinction. J Urol. 1988;139:1124–1127.

15. Rutchik S.D., Resnick M.I. Ureteropelvic junction obstruction and renal calculi: pathophysiology and implications for management. Urol Clin North Am. 1998;25:317–321.

16. Teichman J.M., Vassar G.J., Bishoff J.T. et al. Holmium:YAG lithotripsy yields smaller fragments than lithoclast, pulsed dye laser or electrohydraulic lithotripsy. J Urol. 1998;159 (1):17–23.

17. Teichman J.M., Vassar G.J., Glickman R.D. Holmium:yttrium-aluminum-garnet lithotripsy efficiency varies with stone composition. Urology. 1998;52(3): 392–397.

18. Wiener S.V., Detras L.A., Pais V.M. Jr. Effect of stone composition on operative time during ureteroscopic holmium:yttrium-aluminum-garnet laser lithotripsy with active fragment retrieval. Urology. 2012; 80(4): 790–794.

19. Kapanadze L.B., Novikov A.A. MSCT in the diagnosis of benign kidney formation (oncocytoma). REJR. 2014; 4 (3): 81–85. Russian (Капанадзе Л.Б., Новиков А.А. МСКТ в диагностике доброкачественного образования почки (онкоцитомы). REJR. 2014; 4 (3): 81–85).

20. Worster A. et al. The accuracy of noncontrast helical computed tomography versus intravenous pyelography in the diagnosis of suspected acute urolithiasis: a meta1analysis. Ann Emerg Med. 2002;40: 280.

21. Wu D.S. et al. Indinavir urolithiasis. Curr Opin Urol. 2000;10:557.

22. Kim S.C. et al. Cystine calculi: correlation of CT-visible structure, CT number, and stone morphology with fragmentation by shock wave lithotripsy. Urol Res. 2007; 35: 319.

23. El-Nahas A.R. et al. A prospective multivariate analysis of factors predicting stone disintegration by extracorporeal shock wave lithotripsy: the value of high-resolution noncontrast computed tomography. Eur Urol, 2007; 51: 1688.

24. Patel T. et al. Skin to stone distance is an independent predictor of stone-free status following shockwave lithotripsy. J Endourol. 2009; 23: 1383.

25. Zarse C.A. et al. CT visible internal stone structure, but not Hounsfield unit value, of calcium oxalate monohydrate (COM) calculi predicts lithotripsy fragility in vitro. Urol Res. 2007; 35: 201.

26. Mitcheson H.D., Zamenhof R.G., Bankoff M.S. et al. Determination of the chemical composition of urinary calculi by computerized tomography. J Urol. 1983; 130: 814–819.

27. Newhouse J.H., Prien E.L., Amis E.S. et al. Computed tomographic analysis of urinary calculi. AJR Am J Roentgenol. 1984; 142: 545–348.

28. Mostafavi M.R., Ernst R.D., Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol. 1998; 159: 673–675.

29. Nakada S.Y., Hoff D.G., Attai S. et al. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology. 2000; 55: 816–819.

30. Saw K.C., McAteer J.A., Monga G. et al. Helical CT of urinary calculi: effect of stone composition, stone size, and scan collimation. AJR Am J Roentgenol. 2000; 175: 329–332.

31. Motley G., Dalrymple N., Keesling C, et al. Hounsfield unit density in the determination of urinary stone composition. Urology. 2001; 58: 170–173.

32. Bellin M.F., Renard-Penna R., Conort P. et al. Helical CT evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of CT-attenuation values and density. Eur Radiol. 2004; 14: 2134–2140.

33. Deveci S., Coskun M., Tekin M.I., et al. Spiral computed tomography: role in determination of chemical compositions of pure and mixed urinary stones – an in vitro study. Urology. 2004; 64: 237–240.

34. Sheir K.Z., Mansour O., Madbouly K., et al. Determination of the chemical coposition of urinary calculi by noncontrast spiral computerized tomography. Urol Res. 2005; 33: 99–104.

35. Kuz’menko V.V., Kuz’menko A.V., Bezryadin N.N., Vakhtel’ V.M. X-ray computed tomography in determining the structure of urinary stones. Materialy plenuma pravleniya Rossiiskogo obshchestva urologov, Sochi. 2003. C. 185–186. Russian (Кузьменко В.В., Кузьменко А.В., Безрядин Н.Н., Вахтель В.М. Рентгенкомпьютерная томография в определении структуры мочевых камней. Материалы пленума правления Российского общества урологов, Сочи. 2003. C. 185–186).

36. Marchini G.S., Remer E.M., Gebreselassie S. et al. Stone characteristics on noncontrast computed tomography: establishing definitive patterns to discriminate calcium and uric acid compositions. Urology. 2013; 82(3): 539–546.

37. Andrabi Y., Patino M., Das C.J., Eisner B., Sahani D.V., Kambadakone A. Advances in CT imaging for urolithiasis. Indian J Urol. 2015; 31: 185–193.

38. Hounsfield G.N. Computerized transverse axial scanning (tomography). Description of system. Br J Radiol. 1973;46:1016–1022.

39. Alvarez R.E., Macovski A. Energy-selective reconstructions in x-ray computerized tomography. Phys Med Biol. 1976;21(5):733–744.

40. Macovski A., Alvarez R.E., Chan J.L., Stonestrom J.P., Zatz L.M. Energy dependent reconstruction in x-ray computerized tomography. Comput Biol Med. 1976;6(4): 325–336.

41. Johnson T.R., Krauss B., Sedlmair M. et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007;17(6):1510–1517.

42. Graser A., Johnson T.R., Chandarana H., Macari M. Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol. 2009;19(1): 13–23.

43. Flohr T.G., McCollough C.H., Bruder H. et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2006; 16: 256–268.

44. Kelcz F., Joseph P.M., Hilal S.K. Noise considerations in dual energy CT scanning. Med Phys. 2012; 6: 418–425.

45. Omoumi P., Becce F., Racine D., Ott J.G., Andreisek G., Verdun F.R. Dual-Energy CT: Basic Principles, Technical Approaches, and Applications in Musculoskeletal Imaging. Semin Musculoskelet Radiol. 2015;19(5):431–437.

46. Kruger R.A., Riederer S.J., Mistretta C.A. Relative properties of tomography, K-edge imaging, and K-edge tomography. Med Phys. 1977; 4(3): 244–249.

47. Riederer S.J., Mistretta C.A. Selective iodine imaging using K-edge energies in computerized x-ray tomography. Med Phys. 1977;4(6):474–481.

48. Curry T.S. III, Dowdey J.E., Murry R.C. Christensen’s physics of diagnostic radiology. 4th ed. Philadelphia, Pa: Lea & Febiger. 1990; 61–69.

49. Primak A.N., Ramirez Giraldo J.C., Liu X., Yu L., McCollough C.H. Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys. 2009;36(4):1359–1369.

50. Matlaga B.R., Kawamoto S., Fishman E. Dual source computed tomography: a novel technique to determine stone composition. Urology. 2008; 72(5): 1164–1168.

51. Zheng, X., et al. Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: A meta-analysis. Eur J Radiol. 2016;85:1843.

52. Spek A., Strittmatter F., Graser A., Kufer P., Stief C., Staehler M. Dual energy can accurately differentiate uric acid-containing urinary calculi from calcium stones. World J Urol. 2016;34(9):1297–1302.

53. Thomas C., Heuschmid M., Schilling D., Ketelsen D., Tsiflikas I., Stenzl A., Claussen C.D., Schlemmer H.P. Urinary calculi composed of uric acid, cystine, and mineral salts: differentiation with dual-energy CT at a radiation dose comparable to that of intravenous pyelography. Radiology. 2010;257(2):402–409.

54. Acharya S., Goyal A., Bhalla A.S., Sharma R., Seth A., Gupta A.K. In vivo characterization of urinary calculi on dual-energy CT: going a step ahead with sub-differentiation of calcium stones. Acta Radiol. 2015;56(7):881–889.

55. Hidas G., Eliahou R., Duvdevani M., Coulon P., Lemaitre L., Gofrit O.N., Pode D., Sosna J. Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with x-ray diffraction. Radiology. 2010; 257(2): 394–401.

56. Eiber M., Holzapfel K., Frimberger M., Straub M., Schneider H., Rummeny E.J., Dobritz M., Huber A. Targeted dual-energy single-source CT for characterisation of urinary calculi: experimental and clinical experience. Eur Radiol. 2012;22 (1): 251–258.

57. Kulkarni N.M., Eisner B.H., Pinho D.F., Joshi M.C., Kambadakone A.R., Sahani D.V. Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography. J Comput Assist Tomogr. 2013;37(1):37–45.

58. Manglaviti G., Tresoldi S., Guerrer C.S., Di Leo G., Montanari E., Sardanelli F., Cornalba G. In vivo evaluation of the chemical composition of urinary stones using dualenergy CT. AJR Am J Roentgenol. 2011;197(1):6–83.

59. Chaytor R.J., Rajbabu K., Jones P.A., McKnight L. Determining the composition of urinary tract calculi using stone-targeted dual-energy CT: evaluation of a low-dose scanning protocol in a clinical environment, Br J Radiol. 2016.

60. Zhang G.M., Sun H., Xue H.D., Xiao H, Zhang X.B., Jin Z.Y. Prospective prediction of the major component of urinary stone composition with dual-source dual-energy CT in vivo. Clin Radiol. 2016;71(11):1178–83.

61. Grosjean R., Sauer B., Guerra R.M., Daudon M., Blum A., Felblinger J., Hubert J. Characterization of human renal stones with MDCT: advantage of dual energy and limitations due to respiratory motion. AJR Am J Roentgenol. 2008;190(3):720–728.

62. Ferrero A., Montoya J.C., Vaughan L.E., Huang A.E., McKeag I.O., Enders F.T., Williams J.C. Jr, McCollough C.H. Quantitative Prediction of Stone Fragility From Routine Dual Energy CT: Ex vivo proof of Feasibility. Acad Radiol. 2016;23(12):1545–1552.

63. Largo R., Stolzmann P., Fankhauser C.D., Poyet C., Wolfsgruber P., Sulser T., Alkadhi H., Winklhofer S. Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study. Urolithiasis. 2016;44(3):271–276.

64. Habashy D., Xia R., Ridley W., Chan L., Ridley L. Impact of dual energy characterization of urinary calculus on management. J Med Imaging Radiat Oncol. 2016;60(5):624–631.

65. Martov A.G., Mazurenko D.A., Klimkova M.M., Sinitsyn V.E., Nersisyan L.A., Gadzhiev N.K. Dual energy computed tomography in diagnosis of urolithiasis: a new method for determining the chemical composition of urinary stones. Urologiia. 2017;3:98–103. Russian (Мартов А.Г., Мазуренко Д.А., Климкова М.М., Синицын В.Е., Нерсисян Л.А., Гаджиев Н.К. Двухэнергетическая компьютерная томография в диагностике мочекаменной болезни: новый метод определения химического состава мочевых камней. Урология. 2017;3:98–103).


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: Л. Б. Капанадзе – ассистент кафедры лучевой диагностики и лучевой терапии лечебного факультета ФГАОУ ВО «Первый МГМУ им. И. М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия; e-mail: Lidakap@rambler.ru


Бионика Медиа