ПСМА-таргетная терапия в лечении метастатического кастрационно-резистентного рака предстательной железы


DOI: https://dx.doi.org/10.18565/urology.2024.2.75-82

Шаповаленко Р.А., Шпикина А.Д., Морозов А.О., Газимиев М.А., Еникеев Д.В.

1) Первый МГМУ им. И. М. Сеченова (Сеченовский Университет), Москва, Россия; 2) Институт урологии и репродуктивного здоровья человека, Первый МГМУ им. И. М. Сеченова (Сеченовский Университет), Москва, Россия; 3) Кафедра урологии, Венский Медицинский Университет, Вена, Австрия; 4) урологическое отделение, Медицинский центр Рабина, Петах Тиква, Израиль; 5) Тель-Авивский Университет, Тель-Авив, Израиль
Метастатический кастрационно-резистентный рак предстательной железы (мКРРПЖ) – наиболее тяжелая форма рака предстательной железы, развивающаяся примерно у 30% больных; лечение с использованием стандартных подходов часто остается неэффективным. Разработка принципа тераностики и открытие простат-специфического мембранного антигена (ПСМА) позволяют реализовать новый подход к лечению пациентов с мКРРПЖ – ПСМА-таргетную терапию. В ее основе лежит использование определенного радионуклида (альфа- или бета-минус-излучатель), ассоциированного с лигандом (радиолиганд), связывающимся с ПСМА и оказывающим прицельное воздействие на опухолевые клетки. Возможность проведения одновременной диагностики и лечения заболевания (основа принципа тераностики) – одно из преимуществ данной методики при мКРРПЖ. Высокая специфичность ПСМА-таргетной терапии в комбинации с повышенной экспрессией ПСМА раковыми клетками обеспечивает поражение многочисленных отдаленных метастазов, замедляя прогрессирование заболевания и улучшая состояние пациента.
Цель работы – рассмотреть особенности основных вариантов использования ПСМА и радионуклидов в таргетной терапии мКРРПЖ для выявления преимуществ и области применения каждого из методов.
Наиболее преимущественный метод лечения пациентов с мКРРПЖ – β-радионуклидная терапия, поскольку изотопы с β--излучением обладают «эффектом перекрестного огня» и относительно небольшой токсичностью, доступны для использования. Наиболее оптимальным радионуклидом из группы β--излучателей является лютеций-177 – 177Lu (ПСМА-радиолиганды: 177Lu-PSMA-617 и 177Lu-PSMA-I&T). Несмотря на множество плюсов β--радионуклидной терапии, возможно применение и α-радионуклидной терапии; терапия актинием-225 – 225Ac (ПСМА-радиолиганд: 225Ac-PSMA) более токсична для организма, тем не менее ее можно рассматривать в рамках второй линии или терапии резерва для пациентов с мКРРПЖ и предшествующей неэффективной β--терапией.

Литература


1. el Fakiri M., Geis N.M., Ayada N., Eder M., Eder A.C. PSMA-targeting radiopharmaceuticals for prostate cancer therapy: Recent developments and future perspectives. Cancers. 2021;13(16):3967. Doi: 10.3390/cancers13163967.


2. World Health Organization. Cancer Today. Available online: https://gco.iarc.fr/today/home


3. Zhang H., Koumna S., Pouliot F., Beauregard J.M., Kolinsky M. PSMA theranostics: Current landscape and future outlook. Cancers. 2021;13(16):4023. Doi: 10.3390/cancers13164023.


4. Slusher B.S., Rojas C., Coyle J.T. Glutamate Carboxypeptidase II. Handbook of Proteolytic Enzymes. 2013;2:1620–1627. Doi: 10.1016/B978-0-12-382219-2.00368-9.


5. A dual-monoclonal sandwich assay for prostate-specific membrane antigen: levels in tissues, seminal fluid and urine – PubMed. https://pubmed.ncbi.nlm.nih.gov/10754531/ (accessed Dec. 24, 2022).


6. Mokoala K. et al. PSMA theranostics: Science and practice. Cancers. 2021;13(15):3904. Doi: 10.3390/cancers13153904.


7. Davis M.I., Bennett M.J., Thomas L.M., Bjorkman P.J. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc Natl Acad Sci U S A. 2005;102(17):5981–5986. Doi: 10.1073/PNAS.0502101102/SUPPL_FILE/02101FIG5.JPG.


8. Murshed H. Fundamentals of radiation oncology: physical, biological, and clinical aspects. 2019, Accessed: Dec. 24, 2022.


9. Kassis A.I. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38(5):358–366. doi: 10.1053/J.SEMNUCLMED.2008.05.002.


10. Enger S.A., Hartman T., Carlsson J., Lundqvist H. Cross-fire doses from beta-emitting radionuclides in targeted radiotherapy. A theoretical study based on experimentally measured tumor characteristics. Phys Med Biol. 2008;53(7):1909–1920. Doi: 10.1088/0031-9155/53/7/007.


11. Ruigrok E.A.M. et al. Extensive preclinical evaluation of lutetium-177-labeled PSMA-specific tracers for prostate cancer radionuclide therapy. Eur J Nucl Med Mol Imaging. 2021;48(5):1339–1350. Doi: 10.1007/S00259-020-05057-6.


12. Hofman M.S. et al.


13. Sartor O. et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N Engl J Med. 2021;385(12):1091–1103. Doi: 10.1056/NEJMOA2107322.


14. Violet J. et al. Long-Term Follow-up and Outcomes of Retreatment in an Expanded 50-Patient Single-Center Phase II Prospective Trial of 177Lu-PSMA-617 Theranostics in Metastatic Castration-Resistant Prostate Cancer. J Nucl Med. 2020;61(6):857–865. Doi: 10.2967/JNUMED.119.236414.


15. Marinova M. et al. Improving quality of life in patients with metastatic prostate cancer following one cycle of 177Lu-PSMA-617 radioligand therapy: a pilot study. Nuklearmedizin. 2020;59(6):409–414. Doi: 10.1055/A-1234-5891.


16. Lord C.J., Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–294. Doi: 10.1038/NATURE10760.


17. Nonnekens J. et al. Potentiation of Peptide Receptor Radionuclide Therapy by the PARP Inhibitor Olaparib. Theranostics. 2016;6(11):1821–1832. Doi: 10.7150/THNO.15311.


18. Chalmers A.J. Poly(ADP-ribose) polymerase-1 and ionizing radiation: sensor, signaller and therapeutic target. Clin Oncol (R Coll Radiol). 2004;16(1):29–39, 2004, doi: 10.1016/S0936-6555(03)00223-1.


19. de Wit R. et al. Cabazitaxel versus Abiraterone or Enzalutamide in Metastatic Prostate Cancer. N Engl J Med. 2019;381(26):2506–2518. Doi: 10.1056/NEJMOA1911206.


20. Heck M.M. et al. Treatment Outcome, Toxicity, and Predictive Factors for Radioligand Therapy with 177Lu-PSMA-I&T in Metastatic Castration-resistant Prostate Cancer. Eur Urol. 2019;75(6):920–926. Doi: 10.1016/J.EURURO.2018.11.016.


21. Yadav M.P., Ballal S., Sahoo R.K., Dwivedi S.N., Bal C. Radioligand Therapy With 177Lu-PSMA for Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol. 2019;213(2):275–285. doi: 10.2214/AJR.18.20845.


22. Seifert R. et al. PSMA PET total tumor volume predicts outcome of patients with advanced prostate cancer receiving


23. Leibowitz R. et al. A Retrospective Analysis of the Safety and Activity of Lutetium-177-Prostate-Specific Membrane Antigen Radionuclide Treatment in Older Patients with Metastatic Castration-Resistant Prostate Cancer. Oncologist. 2020;25(9):787–792. Doi: 10.1634/THEONCOLOGIST.2020-0100.


24. Hofman M.S. et al.


25. Gunawardana D.H., Lichtenstein M., Better N., Rosenthal M. Results of strontium-89 therapy in patients with prostate cancer resistant to chemotherapy. Clin Nucl Med. 2004;29(2):81–85. Doi: 10.1097/01.RLU.0000109721.58471.44.


26. Hao G., Mastren T., Silvers W., Hassan G., Öz O.K., Sun X. Copper-67 radioimmunotheranostics for simultaneous immunotherapy and immuno-SPECT. Sci Rep. 2021;11(1):3622. Doi: 10.1038/S41598-021-82812-1.


27. Riaz A., Awais R., Salem R. Side effects of yttrium-90 radioembolization. Front Oncol. 2014;4. Doi: 10.3389/FONC.2014.00198.


28. McCready V.R. Radioiodine – the success story of Nuclear Medicine : 75th Anniversary of the first use of Iodine-131 in humans. Eur J Nucl Med Mol Imaging. 2017;44(2):179–182. doi: 10.1007/S00259-016-3548-5.


29. Gracheva N. et al. Production and characterization of no-carrier-added 161Tb as an alternative to the clinically-applied 177Lu for radionuclide therapy. EJNMMI Radiopharm Chem. 2019;4(1). Doi: 10.1186/S41181-019-0063-6.


30. Kassis A., et al. Radiobiologic principles in radionuclide therapy. Soc Nuclear Med, Accessed: Dec. 24, 2022.


31. Pouget J.P. et al. Clinical radioimmunotherapy--the role of radiobiology. Nat Rev Clin Oncol. 2011;8(12):720–734. doi: 10.1038/NRCLINONC.2011.160.


32. Graf F. et al. DNA double strand breaks as predictor of efficacy of the alpha-particle emitter Ac-225 and the electron emitter Lu-177 for somatostatin receptor targeted radiotherapy. PLoS One. 2014;9(2). Doi: 10.1371/JOURNAL.PONE.0088239.


33. Morgenstern A., Bruchertseifer F. Development of Targeted Alpha Therapy from Bench to Bedside. J Med Imaging Radiat Sci. 2019;50(4S1):S18–S20. Doi: 10.1016/J.JMIR.2019.06.046.


34. Sgouros G. Dosimetry, Radiobiology and Synthetic Lethality: Radiopharmaceutical Therapy (RPT) With Alpha-Particle-Emitters. Semin Nucl Med. 2020;50(2):124–132. Doi: 10.1053/J.SEMNUCLMED.2019.11.002.


35. de Kruijff R.M., Wolterbeek H.T., Denkova A.G. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters? Pharmaceuticals (Basel). 2015;8(2):321–336. doi: 10.3390/PH8020321.


36. Kratochwil C. et al. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J Nucl Med. 2017;58(10):1624–1631. Doi: 10.2967/JNUMED.117.191395.


37. Feuerecker B. et al. Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. Eur Urol. 2021;79(3):343–350. doi: 10.1016/J.EURURO.2020.11.013.


38. Sen I. et al. Therapeutic efficacy of 225Ac-PSMA-617 targeted alpha therapy in patients of metastatic castrate resistant prostate cancer after taxane-based chemotherapy. Ann Nucl Med. 2021;35(7):794–810. Doi: 10.1007/S12149-021-01617-4.


39. van der Doelen M.J. et al. Clinical outcomes and molecular profiling of advanced metastatic castration-resistant prostate cancer patients treated with 225Ac-PSMA-617 targeted alpha-radiation therapy. Urol Oncol. 2021;39(10):729.e7-729.e16. Doi: 10.1016/J.UROLONC.2020.12.002.


40. Sathekge M. et al. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2019;46(1):129–138. doi: 10.1007/S00259-018-4167-0.


41. Sathekge M.M. et al. Treatment of brain metastases of castration-resistant prostate cancer with 225Ac-PSMA-617. Eur J Nucl Med Mol Imaging. 2019;46(8):1756–1757. Doi: 10.1007/S00259-019-04354-Z.


42. Pelletier K., Côté G., Fallah-Rad N., John R., Kitchlu A. CKD After 225Ac-PSMA617 Therapy in Patients With Metastatic Prostate Cancer. Kidney Int Rep. 2020;6(3):853–856. doi: 10.1016/J.EKIR.2020.12.006.


43. Deshayes E. et al. Radium 223 dichloride for prostate cancer treatment. Drug Des Devel Ther. 2017;11:643–2651. Doi: 10.2147/DDDT.S122417.


44. Müller C. et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm Chem. 2017;1. Doi: 10.1186/S41181-016-0008-2.


45. Lindegren S., Albertsson P., Bäck T., Jensen H., Palm S., Aneheim E. Realizing Clinical Trials with Astatine-211: The Chemistry Infrastructure. Cancer Biother Radiopharm. 2020; 35(6):425–436. Doi: 10.1089/CBR.2019.3055.


46. Wilbur D.S.


47. Ayed T. et al. (211)At-labeled agents for alpha-immunotherapy: On the in vivo stability of astatine-agent bonds. Eur J Med Chem. 2016;16:156–164. Doi: 10.1016/J.EJMECH.2016.03.082.


48. Yong K., Brechbiel M. W. Towards translation of 212Pb as a clinical therapeutic; getting the lead in!. Dalton Trans. 2011;40(23):6068–6076. Doi: 10.1039/C0DT01387K.


49. Ahenkorah S. et al. Bismuth-213 for Targeted Radionuclide Therapy: From Atom to Bedside. Pharmaceutics. 2021;13(5). Doi: 10.3390/PHARMACEUTICS13050599.


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: А. О. Морозов – к.м.н., старший научный сотрудник Института урологии и репродуктивного здоровья человека, Первый МГМУ им. И. М. Сеченова (Сеченовский Университет), Москва, Россия; e-mail: Andrei.o.morozov@gmail.com


Бионика Медиа