Сравнительный анализ влияния размера и объема конкремента на длительность тулиевой перкутанной нефролитотрипсии


DOI: https://dx.doi.org/10.18565/urology.2022.4.27-31

С.В. Попов, И.Н. Орлов, М. М. Сулейманов, М.Л. Горелик, М.А. Перфильев

1) СПБ ГБУЗ «Клиническая больница Святителя Луки», Санкт-Петербург, Россия; 2) Военно-Медицинская академия им. С. М. Кирова, Санкт-Петербург, Россия; 3) Северо-Западный государственный медицинский университет им. И. И. Мечникова, Санкт-Петербург, Россия
Цель исследования: определение влияния таких параметрических характеристик камня, как размер и объем, на длительность тулиевой лазерной дезинтеграции конкремента, и определение того, какой из данных показателей эффективней использовать в качестве прогностического критерия продолжительности планируемого оперативного вмешательства.
Материалы и методы. В исследование были включены 52 человека (27 женщин и 25 мужчин), средний возраст которых составил 56,9 (25–79) года. Всем пациентам проводилась перкутанная нефролитотрипсия с дезинтеграцией конкремента при помощи тулиевой энергии. Критерии включения в исследование: размер камня ≥ 2 см, плотность камня >1000, но не больше 1400 HU. Из исследования исключались пациенты с единственной почкой, аномалиями мочевыводящих путей, нарушениями гемостаза. Среднее время операции составило 30 (15–100) мин, при этом среднее время пункции было 3,15 (1–10), время литотрипсии – 28 (14–98) мин. Для определения объема применялся метод автоматической литометрии по данным КТ при помощи программного обеспечения Vitrea, ver. 4.1.52. Размер конкремента определялся по наибольшему диаметру в одной из проекций. Средний размер камня составлял 28,25 (20–58) мм, средний объем – 2579,4 (250–9990) мм3. По результатам исследования представлена графическая корреляция зависимости времени операции от линейного размера и объема конкремента.
Результаты. При сравнении зависимости временных параметров литотрипсии от размерных и объемных характеристик конкремента установлено, что размер служит прогностически менее достоверным предиктором времени литотрипсии и не характеризуется линейным распределением, в отличие от объема конкремента.
Выводы. Выбирая предпочтительный метод лечения, а также прогнозируя время оперативного вмешательства и ассоциированных с ним риском, в первую очередь следует руководствоваться такой стереоскопической характеристикой камня, как его объем.

Литература


1. Türk C., Neisius A., Petrik A., et al. EAU Guidelines on Urolithiasis 2017.


2. Thomas K., Smith N.C., Hegarty N., et al. The Guy’s Stone Score–Grading the Complexity of Percutaneous Nephrolithotomy Procedures. Urology 2011;78:277–281.


3. Okhunov Z., Friedlander J.I., George A.K., et al. S.T.O.N.E. Nephrolithometry: Novel Surgical Classification System for Kidney Calculi. Urology 2013;81:1154–1160.


4. Vernez S.L., Okhunov Z., Motamedinia P., et al. Nephrolithometric Scoring Systems to Predict Outcomes of Percutaneous Nephrolithotomy. Rev Urol 2016; 18: 15–27.


5. Niemann T., Kollmann T., Bongartz G. Diagnostic performance of low dose CT for the detection of urolithiasis: A meta-analysis. Am J Roentgenol. 2008;191(2):396–401. Doi:10.2214/AJR.07.3414.


6. Türk C., Petřík A., Sarica K., et al. EAU Guidelines on Diagnosis and Conservative Management of Urolithiasis. Eur Urol. 2015; 69:1–7. Doi: 10.1016/j.eururo.2015.07.040.


7. Desai M., Sun Y., Buchholz N., et al. Treatment selection for urolithiasis: percutaneous nephrolithomy, ureteroscopy, shock wave lithotripsy, and active monitoring. World J Urol. 2017; 35 (9):1395–1399.


8. Parekattil S.J., Kumar U., Hegarty N.J., et al. External Validation of Outcome Prediction Model for Ureteral/Renal Calculi. J Urol. 2006;175(2):575–579. Doi:10.1016/S0022-5347(05)00244-2.


9. Finch W, Johnston R, Shaida N, et al. Measuring stone volume – three-dimensional software reconstruction or an ellipsoid algebra formula? BJU Int 2014;113:610–614.


10. Patel SR, Nakada SY. Quantification of Preoperative Stone Burden for Ureteroscopy and Shock Wave Lithotripsy: Current State and Future Recommendations. Urology2011;78:282–285.


11. Scheffel H, Stolzmann P, Frauenfelder T, et al. Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol 2007;42:823–829.


12. Bandi G, Meiners RJ, Pickhardt PJ, et al. Stone measurement by volumetric three-dimensional computed tomography for predicting the outcome after extracorporeal shock wave lithotripsy. BJU Int 2009; 103: 524–528.


13. Wilhelm K., Miernik A., Hein S., Schlager D., Adams F., Benndorf M., Neubauer J. Validating Automated Kidney Stone Volumetry in CT and Mathematical Correlation with Estimated Stone Volume Based on Diameter. Journal of Endourology. 2018;32(7):659–664. doi:10.1089/end.2018.0058


14. Berkovitz N, Simanovsky N, Katz R, et al. Coronal reconstruction of unenhanced abdominal CT for correct ureteral stone size classification. Eur Radiol 2010;20:1047–1051.


15. Zorba O.U., Ogullar S., Yazar S., Akca G. Ct-Based Determination of Ureteral Stone Volume: a Predictor of Spontaneous Passage. J Endourol. 2015;30(1):32–36. Doi:10.1089/end.2015.0481.


16. Demehri S, Kalra MK, Rybicki FJ, et al. Quantification of Urinary Stone Volume: Attenuation Threshold–based CT Method – A Technical Note. Radiology. 2011;258(3):915–922. Doi:10.1148/radiol.10100333.


17. Jain R., Omar M., Chaparala H., Kahn A., Li J., Kahn L., Sivalingam S. How Accurate Are We in Estimating True Stone Volume? A Comparison of Water Displacement, Ellipsoid Formula, and a CT-Based Software Tool. Journal of Endourology. 2018; 32(6):572–576. Doi:10.1089/end.2017.0937.


18. Wilhelm K., Miernik A., Hein S., Schlager D., Adams F., Benndorf M., Neubauer J. Validating Automated Kidney Stone Volumetry in CT and Mathematical Correlation with Estimated Stone Volume Based on Diameter. Journal of Endourology. 2018;32(7):659–664. Doi:10.1089/end.2018.0058.


19. Patel S.R., Stanton P., Zelinski N., et al: Automated renal stone volume measurement by noncontrast computerized tomography is more reproducible than manual linear size measurement. J. Urol. 2011;186:2275–2279.


20. Patel S.R., Wells S., Ruma J., et al: Automated Volumetric Assessment by Noncontrast Computed Tomography in the Surveillance of Nephrolithiasis. Urology. 2012;80:27–31.


21. Bell J.R., Posielski N.M., Penniston K.L., Lubner M.G., Nakada S.Y., Pickhardt P.J. Automated Computer Software Compared with Manual Measurements for CT-Based Urinary Stone Metrics: An Evaluation Study. Journal of Endourology. 2018;32(5):455–461. Doi:10.1089/end.2017.0787


22. Yoshida S., Hayashi T., Morozumi M., Osada H., Honda N., Yamada T. Three-dimensional assessment of urinary stone on non-contrast helical computed tomography as the predictor of stonestreet formation after extracorporeal shock wave lithotripsy for stones smaller than 20 mm. Int J Urol. 2007;14(7):665–667.


23. Al-Qahtani S.M., Gil-Deiz-de-Medina S., Traxer O. Predictors of clinical outcomes of flexible ureterorenoscopy with holmium laser for renal stone greater than 2 cm. Adv Urol. 2012;2012:534–547.


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: М. М. Сулейманов – к.м.н., врач-уролог СПбГБУЗ «Клиническая больница Святителя Луки», Санкт-Петербург, Россия, e-mail: doc.suleimanov@gmail.com


Похожие статьи


Бионика Медиа