Исследование механизмов действия препарата Фертивелл in vivo


DOI: https://dx.doi.org/10.18565/urology.2023.1.60-70

Ю.А. Хоченкова, Ю.С. Мачкова, Д.А. Хоченков, Т.А. Сидорова, Э.Р. Сафарова, Н.А. Бастрикова, К.В. Коржова

1) ФГБУ «НМИЦ онкологии им. Н. Н. Блохина» Минздрава России, Москва, Россия; 2) Тольяттинский государственный университет, Тольятти, Россия; 3) ООО «ПептидПРО», Москва, Россия
Цель. Целью данного исследования является изучение специфических механизмов действия препарата Фертивелл на мышиной модели репродуктивного старения, вызванного D-галактозой.
Материалы и методы. Мыши линии C57BL/6J были рандомизированы на четыре группы: интактные мыши (контрольная группа, Ctrl), группа мышей с индуцированным старением, получавших только D-галактозу (Gal); группа мышей, получавших D-галактозу с последующим введением препарата Фертивелл (PP); группа мышей, получавшая D-галактозу с последующим введением комбинации L-карнитина и ацетил-L-карнитина (LC). Репродуктивное старение вызывали ежедневным внутрибрюшинным введением D-галактозы в дозе 100 мг/кг в течение 8 нед. После окончания терапии у всех групп оценивали характеристики спермы, концентрацию тестостерона в крови, иммуногистохимические параметры, экспрессию специфических белков.
Результаты. Препарат Фертивелл оказывает выраженное терапевтическое действие на ткани семенников и сперматозоиды, восстанавливает уровень тестостерона до нормальных значений и, кроме того, показал себя более эффективным протектором в условиях оксидативного стресса в отношении репродуктивной системы по сравнению с широко используемыми при мужском бесплодии препаратами L-карнитина и ацетил-L-карнитина. Фертивелл в дозе 1 мг/кг восстанавливал количество подвижных сперматозоидов, статистически значимо повышая их до 67,4±3,1%, что сопоставимо с показателем интактной группы. Введение препарата Фертивелл восстанавливало активность митохондрий, что также выражается в повышении подвижности сперматозоидов. Кроме того, Фертивелл восстанавливает уровень АФК внутриклеточно до значений контрольной группы и снижает количество TUNEL+ клеток (с фрагментированным ДНК) до уровня интактного контроля. Таким образом, препарат на основе полипептидов семенников Фертивелл оказывает комплексное действие на репродуктивную функцию, приводя к изменению экспрессии генов, повышению синтеза белков, предотвращению повреждений ДНК в тканях семенников, повышению митохондриальной активности в тканях семенников и сперматозоидах семявыносящего канальца, что приводит к последующему восстановлению функциональной активности семенников.

Литература


1. Babakhanzadeh E., Nazari M., Ghasemifar S., Khodadadian A. Some of the Factors Involved in Male Infertility: A Prospective Review. Int J Gen Med. 2020;13:29–41. Doi: 10.2147/IJGM.S241099.


2. Bisht S., Faiq M., Tolahunase M., Dada R. Oxidative stress and male infertility. Nat Rev Urol. 2017;14:470–485. Doi: 10.1038/nrurol.2017.69.


3. Desai N., Sabanegh E., Kim T., Agarwal A. Free radical theory of aging: implications in male infertility. Urology. 2010;75:14–19. Doi: 10.1016/j. urology.2009.05.025.


4. Belloc S., Hazout A., Zini A., et al. How to overcome male infertility after 40: Influence of paternal age on fertility. Maturitas. 2014;78:22–29. Doi: 10.1016/j.maturitas.2014.02.011.


5. Parameshwaran K., Irwin M.H., Steliou K., Pinkert C.A. D-Galactose Effectiveness in Modeling Aging and Therapeutic Antioxidant Treatment in Mice. Rejuvenation Res. 2010;13:729–735. Doi: 10.1089/rej.2010.1020.


6. Salman T.M., Olayaki L.A., Alagbonsi I.A., Oyewopo A.O. Spermatotoxic effects of galactose and possible mechanisms of action. Middle East Fertil Soc J. 2016;21:82–90. Doi: 10.1016/j.mefs.2015.09.004.


7. Liu W., Zhang L., Gao A. et al. Food-Derived High Arginine Peptides Promote Spermatogenesis Recovery in Busulfan Treated Mice. Front Cell Dev Biol. 2021;9. Available: https://www.frontiersin.org/articles/10.3389/ fcell.2021.791471


8. Amaral A., Castillo J., Ramalho-Santos J., Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update. 2014;20:40–62. Doi: 10.1093/humupd/dmt046.


9. Bu T., Wang L., Wu X. et al. A laminin-based local regulatory network in the testis that supports spermatogenesis. Semin Cell Dev Biol. 2022;121:40–52. Doi: 10.1016/j.semcdb.2021.03.025.


10. Wu S., Yan M., Ge R., Cheng C.Y. Crosstalk between Sertoli and Germ Cells in Male Fertility. Trends Mol Med. 2020;26:215–231. Doi: 10.1016/j.molmed.2019.09.006.


11. Rizzetti D.A., Martinez C.S., Escobar A.G. et al. Egg white-derived peptides prevent male reproductive dysfunction induced by mercury in rats. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2017;100:253–264. Doi: 10.1016/j.fct.2016.12.038.


12. Wu Y., Tian Q., Li L. et al. Inhibitory effect of antioxidant peptides derived from Pinctada fucata protein on ultraviolet-induced photoaging in mice. J Funct Foods. 2013;5:527–538. Doi: 10.1016/j.jff.2013.01.016.


13. EAU Guidelines on Sexual and Reproductive Health - Uroweb. In: Uroweb - European Association of Urology


14. Pushkar D.Yu., Kupriyanov Y.A., Gamidov S.I., Teteneva A.V., Spivak L.G., Shormanov I.S., Novikov A.I., Al-Shukri S.Kh., Bogdan E.N., Shchukin V.L., Boriskin A.G. Assessment of the safety and efficacy of medicinal product PPR-001 based on regulatory polypeptides of the testes. Urologiia. 2021;6:100–108. Russian (Пушкарь Д.Ю., Куприянов Ю.А., Берников А.Н., Гамидов С.И., Тетенева А.В., Спивак Л.Г., Шорманов И.С., Новиков А.И., Аль-Шукри С.Х., Богдан Е.Н., Щукин В.Л., Борискин А.Г. Оценка безопасности и эффективности лекарственного препарата на основе регуляторных полипептидов семенников PPR-001. Урология. 2021;6:100–108). Doi: 10.18565/urology.2021.6.100-108.


15. Agarwal A., Majzoub A., Parekh N., Henkel R. A Schematic Overview of the Current Status of Male Infertility Practice. World J Mens Health. 2020;38:308–322. Doi: 10.5534/wjmh.190068.


16. Liao C.-H., Chen B.-H., Chiang H.-S. et al. Optimizing a Male Reproductive Aging Mouse Model by d-Galactose Injection. Int J Mol Sci. 2016;17:98. Doi: 10.3390/ijms17010098.


17. Beumer T.L., Roepers-Gajadien H.L., Gademan I.S. et al. The role of the tumor suppressor p53 in spermatogenesis. Cell Death Differ. 1998;5:669– 677. Doi: 10.1038/sj.cdd.4400396.


18. Liang M., Wen J., Dong Q. et al. Testicular hypofunction caused by activating p53 expression induced by reactive oxygen species in varicocele rats. Andrologia. 2015;47: 1175–1182. Doi: 10.1111/and.12400.


19. Lindsay J., Esposti M.D., Gilmore A.P. Bcl-2 proteins and mitochondria-specificity in membrane targeting for death. Biochim Biophys Acta 2011;1813: 532–539. Doi: 10.1016/j.bbamcr.2010.10.017.


20. Eliveld J., van den Berg E.A., Chikhovskaya J.V. et al. Primary human testicular PDGFRα+ cells are multipotent and can be differentiated into cells with Leydig cell characteristics in vitro. Hum Reprod Oxf Engl. 2019;34:1621–1631. Doi: 10.1093/humrep/dez131.


21. Basciani S., Mariani S., Arizzi M. et al. Expression of Platelet-Derived Growth Factor-A (PDGF-A), PDGF-B, and PDGF Receptor-α and -β during Human Testicular Development and Disease. J Clin Endocrinol Metab. 2002;87:2310–2319. Doi: 10.1210/jcem.87.5.8476.


22. Nelson J.F., Latham K.R., Finch C.E. Plasma testosterone levels in C57BL/6J male mice: effects of age and disease. Acta Endocrinol (Copenh). 1975;80:744–752. Doi: 10.1530/acta.0.0800744.


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: К. В. Коржова – к.б.н., менеджер по доклиническим исследованиям ООО «ПептидПРО», Москва, Россия; e-mail: k.korzhova@peptidpro.com


Похожие статьи


Бионика Медиа