Регенеративные технологии при реконструктивных операциях на уретре: обзор литературы. Часть 2


DOI: https://dx.doi.org/10.18565/urology.2023.6.138-144

Павлов В.Н., Казихинуров Р.А., Казихинуров А.А., Гуспанов Р.И., Шамсов Б.И., Вардикян А.Г., Казихинуров Р.Р.

1) ФГБОУ ВО «Башкирский государственный медицинский университет» Министерства здравоохранения Российской Федерации, Уфа, Россия; 2) ФГБОУ ВО РНИМУ им. Н. И. Пирогова, Москва, Россия
Реконструкция уретры в ряде случаев является трудноразрешимой задачей для урологов из-за недостаточного количества аутологичной ткани и рецидивов, что побуждает клиницистов к поиску альтернативных решений. Последние достижения в лечении стриктур уретры связаны с регенеративной медициной и тканевой инженерией. Целью данной работы является обзор последних достижений использования регенеративных технологий, биоматериалов и клеточной терапии при уретропластике. Во второй части литературного обзора представлены перспективы использования стромально-васкулярной фракции (СВФ) аутологичной жировой ткани при реконструктивных операциях на мочеиспускательном канале с учетом доступности данных клеток, полученных путем липоаспирации. Отражены технологии тканевой инженерии, которые предлагают свои варианты решения задач и ограничения их использования. В статье также приведены примеры экспериментальных исследований, в которых использовались бесклеточные и клеточные биоматериалы для реконструкции уретры. Мы считаем, что подход к использованию СВФ и биоматриксов может стать потенциально безопасным и эффективным методом, связанным с ускорением процессов ангиогенеза и регенерациии, и может рассматриваться как перспективное направление развития.

Литература


1. Bi H, Li H, Zhang C, Mao Y, Nie F, Xing Y, Sha W, Wang X, Irwin DM,Tan H. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process. Stem Cell Res Ther. 2019 Oct 17;10(1):302. Doi: 10.1186/s13287-019-1415-6.


2. Zhao X, Guo J, Zhang F, Zhang J, Liu D, Hu ., Yin H, Jin L. Therapeutic application of adipose-derived stromal vascular fraction in diabetic foot. Stem Cell Res Ther. 2020 Sep 14;11(1):394. Doi: 10.1186/s13287-020-01825-1.


3. Epifanova MV. Application of regenerative medicine technologies in sexual dysfunction and fertility disorders in men: abstract. diss. ... Doctor of Medical Sciences: 3.1.13


4. Tada K, Nakada M, Matsuta M, Murai A, Hayashi K, Tsuchiya H. Enhanced nerve autograft using stromal vascular fraction. Eur J Orthop SurgTraumatol. 2021 Jan;31(1):183-188. Doi: 10.1007/s00590-020-02758-4.


5. Atalay S, Coruh A, Deniz K. Stromal vascular fraction improves deep partial thickness burn wound healing. Burns. 2014 Nov;40(7):1375-1383. Doi: 10.1016/j.burns.2014.01.023.


6. Roche R, Festy F, Fritel X. Stem cells for stress urinary incontinence: the adipose promise. J Cell Mol Med. 2010 Jan;14(1-2):135-1342. Doi: 10.1111/j.1582-4934.2009.00915.x.


7. Gatiatulina ER, Manturova NE, Dimov GP, Vasiliev VS, Teryushkova ZhI. Stromal vascular fraction of adipose tissue: mechanism of action, prospects and risks of topical application. Plastic surgery and aesthetic medicine. 2019;2:43-48. Russian (Гатиатулина Е.Р., Мантурова Н.Е.,Димов Г.П., Васильев В.С., Терюшкова Ж.И. Стромально-васкулярная фракция жировой ткани: механизм действия, перспективы и риски местного применения. Пластическая хирургия и эстетическая медицина. 2019;2:43-48).


8. Zimmerlin L, Donnenberg VS, Pfeifer ME, Meyer EM, Péault B, Rubin JP, Donnenberg AD. Stromal vascular progenitors in adult human adipose tissue. Cytometry A. 2010 Jan;77(1):22-30. Doi: 10.1002/cyto.a.20813.


9. Karagergou E, Dionyssopoulos A, Karayannopoulou M, Psalla D., Theodoridis A, Demiri E, Koliakos G. Adipose-derived stromal vascular fraction aids epithelialisation and angiogenesis in an animal model. J Wound Care. 2018 Oct 2;27(10):637-644. Doi: 10.12968/jowc.2018.27.10.637.


10. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K,Ho JW, Nordon RE, Harvey RP. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 2019 Mar 26;8:e43882. Doi: 10.7554/eLife.43882.


11. Karadağ Sarı EÇ, Ovalı E. Factors Affecting the Population of Mesenchymal Stem Cells in Adipose-Derived Stromal Vascular Fraction. Balkan Med J. 2022 Oct 24. Doi: 10.4274/balkanmedj.galenos.2022.2022-5-50.


12. Kwan HY, Chen M, Xu K, Chen B. The impact of obesity on adipocyte-derived extracellular vesicles. Cell Mol Life Sci. 2021 Dec;78(23):7275-7288. Doi: 10.1007/s00018-021-03973-w.


13. Priglinger E, Strohmeier K, Weigl M, Lindner C, Auer D, Gimona M, Barsch M,Jacak J, Redl H, Grillari J, Sandhofer M, Hackl M, Wolbank S. SVF-derived extracellular vesicles carry characteristic miRNAs in lipedema. Sci Rep. 2020 Apr 29;10(1):7211. Doi: 10.1038/s41598-020-64215-w.


14. Teryushkova ZhI, Vasiliev VS, Vazhenin AV, Vasiliev SA, Eremin II.Lipografting and stromal vascular fraction of adipose tissue in the treatment of patients with postradiative rectovaginal fistulas Oncological coloproctology. 2019. Vol. 9. No. 1. 34-41. Russian (Терюшкова Ж.И.,Васильев В.С., Важенин А.В., Васильев С.А., Еремин И.И. Липографтинг и стромально-васкулярная фракция жировой ткани в лечении пациенток с постлучевыми ректовагинальными свищами. Онкологическая колопроктология. 2019. Т. 9. № 1. С. 34-41).


15. Rautiainen S, Laaksonen T, Koivuniemi R. Angiogenic Effects and Crosstalk of Adipose-Derived Mesenchymal Stem/Stromal Cells and Their Extracellular Vesicles with Endothelial Cells. Int J Mol Sci. 2021 Oct 8;22(19):10890. Doi: 10.3390/ijms221910890.


16. Rowe G, Heng DS, Beare JE, Hodges NA, Tracy EP, Murfee WL,LeBlanc AJ. Stromal Vascular Fraction Reverses the Age-Related Impairment in Revascularization following Injury. J Vasc Res. 2022 Sep. 8:1-15. Doi: 10.1159/000526002.


17. Jin E, Chae DS, Son M, Kim SW. Angiogenic characteristics of human stromal vascular fraction in ischemic hindlimb. Int J Cardiol. 2017 May 1;234:38-47. Doi: 10.1016/j.ijcard.2017.02.080.


18. Fakiha K. Adipose stromal vascular fraction: a promising treatment for severe burn injury. Hum Cell. 2022 Sep.;35(5):1323-1337. Doi: 10.1007/s13577-022-00743-z.


19. Ryabkov MG, Egorikhina MN, Arefyev IYu, Charykova IN, Koloshe-in NA, Bogdanova AE, Moskovchenko AO, Zasetskaya NG. The use of stromal vascular fraction of adipose tissue for the treatment of patients with thermal burns. Genes and Cells. 2022. Vol. 17. No. 3. 200-201. Russian (Рябков М.Г., Егорихина М.Н., Арефьев И.Ю., Чарыкова И.Н.,Колошеин Н.А., Богданова А.Е., Московченко А.О., Засецкая Н.Г. Использование стромально-васкулярной фракции жировой ткани для лечения пациентов с термическими ожогами. Гены и Клетки. 2022. Т. 17. № 3. С. 200-201).


20. Mytsyk M, Isu G, Cerino G, Grapow MTR, Eckstein FS, Marsano A. Paracrine potential of adipose stromal vascular fraction cells to recover hypoxia-induced loss of cardiomyocyte function. Biotechnol Bioeng. 2019 Jan;116(1):132-142. Doi: 10.1002/bit.26824.


21. Zhu M, Xue J, Lu S, Yuan Y, Liao Y, Qiu J, Liu C, Liao Q. Anti-inflammatory effect of stromal vascular fraction cells in fat transplantation. Exp Ther Med. 2019 Feb;17(2):1435-1439. Doi: 10.3892/etm.2018.7082.


22. Wetzels S, Bijnen M, Wijnands E, Biessen EAL, Schalkwijk CG,Wouters K. Characterization of Immune Cells in Human Adipose Tissue by Using Flow Cytometry. J Vis Exp. 2018 Mar 6;(133):57319. Doi: 10.3791/57319.


23. Dong Z, Fu R, Liu L, Lu F. Stromal vascular fraction (SVF) cells enhance long-term survival of autologous fat grafting through the facilitation of M2 macrophages. Cell Biol Int. 2013 Aug;37(8):855-859. Doi: 10.1002/cbin.10099.


24. Matveeva VG, Antonova LV, Velikanova EA, Sardin ES, Barbarash OL.Comparison of the effectiveness of available sources of autogenic colony-forming endothelial cells. Genes and Cells. 2019. Vol. 14. No. 4. 35-45. Russian (Матвеева В.Г., Антонова Л.В., Великанова Е.А., Сардин Е.С., Барбараш О.Л. Сравнение эффективности доступных источников аутогенных колониеформирующих эндотелиальных клеток. Гены и Клетки. 2019. Т. 14. № 4. С. 35-45).


25. van Boxtel J, Vonk LA, Stevens HP, van Dongen JA. Mechanically Derived Tissue Stromal Vascular Fraction Acts Anti-inflammatory on TNF Alpha-Stimulated Chondrocytes In Vitro. Bioengineering (Basel). 2022 Jul 27;9(8):345. Doi: 10.3390/bioengineering9080345.


26. Vasyutin IA, Lyundup AV, Vinarov AZ, Butnaru DV, Kuznetsov SL. Urethral reconstruction using tissue engineering technologies. Bulletin of the Russian Academy of Medical Sciences. 2017. Vol. 72. No. 1. 17-25. Russian (Васютин И.А., Люндуп А.В., Винаров А.З., Бутнару Д.В.,Кузнецов С.Л. Реконструкция уретры с помощью технологий тканевой инженерии. Вестник Российской академии медицинских наук. 2017. Т. 72. № 1. С. 17-25).


27. Lee JM, Moon KC, Han SK, Jeong SH, Kim WK. What tissue is formed after graft of adipose-derived stromal vascular fraction cells? J Craniofac Surg. 2013 Mar;24(2):636-639. Doi: 10.1097/SCS.0b013e318272dae9.


28. Paganelli A, Benassi L, Rossi E, Magnoni C. Extracellular matrix deposition by adipose-derived stem cells and fibroblasts: a comparative study. Arch Dermatol Res. 2020 May;312(4):295-299. Doi: 10.1007/s00403-019-01997-8.


29. Minteer D, Marra KG, Rubin JP. Adipose-derived mesenchymal stem cells: biology and potential applications. Adv Biochem Eng Biotechnol. 2013;129:59-71. Doi: 10.1007/10_2012_146.


30. Rodriguez RL, Frazier T, Bunnell BA, Mouton CA, March K., Katz AJ,Rubin JP, Llull R, Sørensen JA, Gimble JM. Arguments for a Different Regulatory Categorization and Framework for Stromal Vascular Fraction. Stem Cells Dev. 2020 Mar 1;29(5):257-262. Doi: 10.1089/scd.2019.0096.


31. van Dongen JA, Stevens HP, Parvizi М, van der Lei B, Harmsen MC. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes. Wound Repair Regen. 2016 Nov;24(6):994-1003. Doi: 10.1111/wrr.12482.


32. Rodriguez J, Pratta AS, Abbassi N, Fabre H, Rodriguez F, Debard C., Adobati J, Boucher F, Mallein-Gerin F, Auxenfans C, Damour O, Mojallal A.Evaluation of Three Devices for the Isolation of the Stromal Vascular Fraction from Adipose Tissue and for ASC Culture: A Comparative Study. Stem Cells Int. 2017;2017:9289213. Doi: 10.1155/2017/9289213.


33. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev. 2016 Feb 1;97:4-27. Doi: 10.1016/j.addr.2015.11.001.


34. Doyle AD, Nazari SS, Yamada KM. Cell-extracellular matrix dynamics. Phys Biol. 2022 Jan 12;19(2):10.1088/1478-3975/ac4390. Doi: 10.1088/1478-3975/ac4390.


35. Marchand M, Monnot C, Muller L, Germain S. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin Cell Dev Biol. 2019 May;89:147-156. Doi: 10.1016/j.semcdb.2018.08.007.


36. Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M,Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021 Dec;288(24):6850-6912. Doi: 10.1111/febs.15776.


37. Chiu CH. Does Stromal Vascular Fraction Ensure a Higher Survival in Autologous Fat Grafting for Breast Augmentation? A Volumetric Study Using 3-Dimensional Laser Scanning. Aesthet Surg J. 2019 Jan 1;39(1):41-52. Doi: 10.1093/asj/sjy030.


38. Ghosh AK, Mau T, O’Brien M, Garg S, Yung R. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue. Aging (Albany NY). 2016 Oct 24;8(10):2525-2537. Doi: 10.18632/aging.101083.


39. Zakhari JS, Zabonick J, Gettler B, Williams SK. Vasculogenic and angiogenic potential of adipose stromal vascular fraction cell populations in vitro. In Vitro Cell Dev Biol Anim. 2018 Jan;54(1):32-40. Doi: 10.1007/s11626-017-0213-7.


40. Stivers KB, Beare JE, Chilton PM, Williams SK, Kaufman CL, Hoying JB.Adipose-derived cellular therapies in solid organ and vascularized-composite allotransplantation. Curr Opin Organ Transplant. 2017 Oct;22(5):490-498. Doi: 10.1097/MOT.0000000000000452.


41. Dufau J, Shen JX, Couchet M, De Castro Barbosa T, Mejhert N, Massier L,Griseti E, Mouisel E, Amri EZ, Lauschke VM, Rydén M, Langin D. In vitro and ex vivo models of adipocytes. Am J Physiol Cell Physiol. 2021 May 1;320(5):C822-C841. Doi: 10.1152/ajpcell.00519.2020.


42. Alexaki A, Clarke BA, Gavrilova O, Ma Y, Zhu H, Ma X, Xu L, Tuymetova G, Larman BC, Allende ML, Dunn TM, Proia RL. De Novo Sphingolipid Biosynthesis Is Required for Adipocyte Survival and Metabolic Homeostasis. J Biol Chem. 2017 Mar 3;292(9):3929-3939. Doi: 10.1074/jbc.M116.756460.


43. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater. 2021 Sep 23;10:15-31. Doi: 10.1016/j.bioactmat.2021.09.014.


44. Yang SX, Yao Y, Hu YF, Song C, Wang LL, Jin HM. Reconstruction of rabbit urethra using urethral extracellular matrix. Chin Med J (Engl). 2004 Dec;117(12):1786-1790.


45. Amesty MV, Chamorro CI, López-Pereira P, Martínez-Urrutia MJ,Sanz B, Rivas S, Lobato R, Fossum M. Creation of Tissue-Engineered Urethras for Large Urethral Defect Repair in a Rabbit Experimental Model. Front Pediatr. 2021 Jun 22;9:691131. Doi: 10.3389/fped.2021.691131.


46. Huang X, Luo J, Liao Y, Qu ., Yang Z. Study on small intestinal submucosa as rep.air materials in urethral reconstruction. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2006 Mar;20(3):206-209.


47. Huang JW, Xie MK, Zhang Y, Wei GJ, Li X, Li HB, Wang JH,Zhu WD, Li C, Xu YM, Song LJ. Reconstruction of penile urethra with the 3-dimensional porous bladder acellular matrix in a rabbit model. Urology. 2014 Dec;84(6):1499-1505. Doi: 10.1016/j.urology.2014.07.044.


48. Wang JH, Xu YM, Fu Q, Song LJ, Li C, Zhang Q, Xie MK. Continued sustained release of VEGF by PLGA nanospheres modified BAMG stent for the anterior urethral reconstruction of rabbit. Asian Pac J TropMed. 2013 Jun;6(6):481-484. Doi: 10.1016/S1995-7645(13)60078-4.


49. Lv X, Li Z, Chen S, Xie M, Huang J, Peng X, Yang R, Wang H, Xu Y,Feng C. Structural and functional evaluation of oxygenating keratin/silk fibroin scaffold and initial assessment of their potential for urethral tissue engineering. Biomaterials. 2016 Apr;84:99-110. Doi: 10.1016/j.biomaterials.2016.01.032.


50. Jia W, Tang H, Wu J, Hou X, Chen B, Chen W, Zhao Y, Shi C, Zhou F,Yu W,Huang S, Ye G, Dai J. Urethral tissue regeneration using collagen scaffold modified with collagen binding VEGF in a beagle model. Biomaterials. 2015 Nov;69:45-55. Doi: 10.1016/j.biomaterials.2015.08.009.


51. Marin E, Boschetto F, Pezzotti G. Biomaterials and biocompatibility: An historical overview. J Biomed Mater Res A. 2020 Aug 1;108(8):1617-1633. Doi: 10.1002/jbm.a.36930.


52. Wang F, Liu T, Yang L, Zhang G, Liu H, Yi X, Yang X, Lin TY, Qin W, Yuan J. Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models. Med Sci Monit. 2014 Nov 26;20:2430-2438. Doi: 10.12659/MSM.891042.


53. Huang JW, Lv XG, Li Z, Song LJ, Feng C, Xie MK, Li C, Li HB,Wang JH, Zhu WD, Chen SY, Wang HP, Xu YM. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomed Mater. 2015 Sep 11;10(5):055005. Doi: 10.1088/1748-6041/10/5/055005.


54. Zhang K, Guo X, Zhao W, Niu G, Mo X, Fu Q. Application of Wnt Pathway Inhibitor Delivering Scaffold for Inhibiting Fibrosis in Urethra Strictures: In Vitro and in Vivo Study. Int J Mol Sci. 2015 Nov 19;16(11):27659-27676. Doi: 10.3390/ijms161126050.


55. Li C, Xu YM, Liu ZS, Li HB. Urethral reconstruction with tissue engineering and RNA interference techniques in rabbits. Urology. 2013 May;81(5):1075-1080. Doi: 10.1016/j.urology.2013.01.041.


56. Li H, Xu Y, Xie H, Li C, Song L, Feng C, Zhang Q, Xie M, Wang Y, Lv X. Epithelial-differentiated adipose-derived stem cells seeded bladder acellular matrix grafts for urethral reconstruction: an animal model. Tissue Eng Part A. 2014 Feb;20(3-4):774-784. Doi: 10.1089/ten.TEA.2013.0122.


57. Li CL, Liao WB, Yang SX, Song C, Li YW, Xiong YH, Chen L. Urethral reconstruction using bone marrow mesenchymal stem cell- and smooth muscle cell-seeded bladder acellular matrix. Transplant Proc. 2013 Nov;45(9):3402-3407. Doi: 10.1016/j.transproceed.2013.07.055.


58. Gu GL, Xia SJ, Zhang J, Liu GH, Yan L, Xu ZH, Zhu YJ. Tubularized urethral replacement using tissue-engineered peritoneum-like tissue in a rabbit model. Urol Int. 2012;89(3):358-364. Doi: 10.1159/000339745.


59. Fu Q, Deng CL, Song XF, Xu YM. Long-term study of male rabbit urethral mucosa reconstruction using epidermal cell. Asian J Androl. 2008 Sep;10(5):719-722. Doi: 10.1111/j.1745-7262.2008.00419.x.


60. Fu Q, Deng CL, Liu W, Cao YL. Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU Int. 2007 May;99(5):1162-1165. Doi: 10.1111/j.1464-410X.2006.06691.x.


61. Xie M, Song L, Wang J, Fan S, Zhang Y, Xu Y. Evaluation of stretched electrospun silk fibroin matrices seeded with urothelial cells for urethra reconstruction. J Surg Res. 2013 Oct;184(2):774-781. Doi: 10.1016/j.jss.2013.04.016.


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: Р. А. Казихинуров – к.м.н., доцент кафедры урологии с курсом ИДПО ФГБОУ ВО «Башкирский государственный медицинский университет» Министерства здравоохранения Российской Федерации, Уфа, Россия; e-mail: royuro@mail.ru


Похожие статьи


Бионика Медиа