Изучение общей антиоксидантной способности и ее корреляция с уровнем иммуносупрессивных препаратов в крови после трансплантации почки


DOI: https://dx.doi.org/10.18565/urology.2024.5.86-89

Zahra Tolou-Ghamari, Farhad Tadayon

1) Исследовательский центр питания и продовольственной безопасности, Исфаханский университет медицинских наук, Исфахан, Иран; 2) Кафедра урологии, медицинский факультет, Исфаханский университет медицинских наук, Исфахан, Иран
Введение. Оксидативный стресс является важным фактором неблагоприятных исходов трансплантации.
Цель. Определить общую антиоксидантную способность и ее корреляцию с уровнем иммуносупрессивных препаратов в крови после трансплантации почки.
Материалы и методы. Всего в исследование включены 35 пациентов после трансплантации почки и 35 здоровых лиц, подобранных по возрасту. Статистическая обработка проводилась в программе Statistical Package(SPSS Inc, Chicago, IL, USA). Различия считались статистически значимыми при уровне p<0,05.
Результаты. У здоровых лиц средняя общая антиоксидантная способность ±СО составила 91,9±16,6 Ед/мл, что было статистически значимо выше, чем у пациентов после трансплантации (27,3±24,1 Ед/мл; p≤0,01). Средний уровень такролимуса равнялся 13,7±5,3 нг/мл. Корреляция между минимальным уровнем такролимуса и общей антиоксидантной способностью составила 0,19 (p≤0,14). При этом не выявлено различий между двумя группами в зависимости от возраста (p≤0,42).
Выводы. Результаты исследования свидетельствуют, что при небольшом объеме выборки общая антиоксидантная способность у пациентов после трансплантации почки ниже, чем в контрольной группе. Необходимо провести дальнейшие исследования для изучения связи общей антиоксидантной способности и результатов трансплантации почки.

Литература


1. Daenen K, Andries A, Mekahli D, Van Schepdael A, Jouret F, Bammens B. Oxidative stress in chronic kidney disease. Pediatr Nephrol. 2019 Jun;34(6):975-991. doi: 10.1007/s00467-018-4005-4.


2. Tabriziani H, Lipkowitz MS, Vuong N. Chronic kidney disease, kidney transplantation and oxidative stress: a new look to successful kidney transplantation. Clin Kidney J. 2018 Feb;11(1):130–135. doi: 10.1093/ckj/sfx091.


3. Dennis JM, Witting PK. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients. 2017 Jul; 9(7): 718. doi: 10.3390/nu9070718.


4. Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012 Apr; 2(2):1303-53.


5. Fonseca I, Reguengo H, Almeida M, Dias L, Martins LS, Pedroso S, Santos J, Lobato L, Henriques AS, Mendonça D. Oxidative stress in kidney transplantation: malondialdehyde is an early predictive marker of graft dysfunction. Transplantation. 2014 May 27;97(10):1058-65. doi: 10.1097/01. TP.0000438626.91095.50.


6. Nafar M, Zahra Sahraei, Jamshid Salamzadeh, Shiva Samavat, Nosartolah D Vaziri. Oxidative stress in kidney transplantation: causes, consequences, and potential treatment. Iran J Kidney Dis. 2011 Nov;5(6):357-72.


7. Chrzanowska M, Kamińska J, Głyda M, Duda G, Makowska E. Antioxidant capacity in renal transplant patients. Pharmazie. 2010 May;65(5):363–66.


8. Perrea DN, Moulakakis KG, Poulakou MV, Vlachos IS, Papachristodoulou A, Kostakis AI. Correlation between oxidative stress and immunosuppressive therapy in renal transplant recipients with an uneventful postoperative course and stable renal function. Int Urol Nephrol. 2006;38(2):343-8. doi: 10.1007/s11255-006-0054-x.


9. Mazdak H, Tolou Ghamari Z, Gholampour M. Bladder cancer: total antioxidant capacity and pharmacotherapy with vitamin-E. Int Urol Nephrol. 2020. Jul;52(7):1255-1260. doi: 10.1007/s11255-020-02411-3.


10. Tolou-Ghamari Z, Mortazavi M, Palizban AA, Najafi MR. The investigation of correlation between Iminoral concentration and neurotoxic levels after kidney transplantation. Adv Biomed Res. 2015; 4: 59.


11. Tadayon F, Shariati A, Tolou-Ghamari Z. Type of vascular anastomosis and early outcome after kidney transplantation. Urologiia. 2021 Jun;3:75–81.


12. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016;15:71.


13. Chaiswing L, St Clair WH, St Clair DK. Redox paradox: a novel approach to therapeutics-resistant cancer. Antioxid Redox Signal. 2018; 29(13):1237–1272


14. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HH, Ghezzi P. Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal. 2015; 23(14):1144–1170.


15. Terzi F, Ciftci MK. Protective effect of silymarin on tacrolimus-induced kidney and liver toxicity. BMC Complement Med Ther. 2022 Dec 13;22(1):331. doi: 10.1186/s12906-022-03803-x.


16. Vandewiele S, Herman J, van den Heuvel L, Knops N. A longitudinal study of long-term renal outcome after pediatric liver transplantation in relation to CNI exposure. Pediatr Transplant. 2023 Dec 27: e14677. doi: 10.1111/petr.14677.


17. Stefanović NZ, Cvetković TP, Jevtović-Stoimenov TM, Zvezdanović-Čelebić LV, Stojanović DR, Ignjatović AM, Živković ND, Veličković-Radovanović RM. Potential role of tacrolimus in erythrocytes’ antioxidative capacity in long-term period after renal transplantation. Eur J Pharm Sci. 2015 Apr 5; 70:132-9. doi: 10.1016/j.ejps.2015.01.013.


18. Stumpf J, Budde K, Witzke O, Sommerer C, Vogel T, Schenker P, Woitas RP, Opgenoorth M, Trips E, Schrezenmeier E, Hugo C; German S&L Study. Fixed low dose versus concentration-controlled initial tacrolimus dosing with reduced target levels in the course after kidney transplantation: results from a prospective randomized controlled non-inferiority trial (Slow & Low study). EClinicalMedicine. 2023 Dec 22; 67:102381. doi: 10.1016/j.eclinm.2023.102381.


19. Joncquel M, Labasque J, Demaret J, Bout MA, Hamroun A, Hennart B, Tronchon M, Defevre M, Kim I, Kerckhove A, George L, Gilleron M, Dessein AF, Zerimech F, Grzych G. Targeted Metabolomics Analysis Suggests That Tacrolimus Alters Protection against Oxidative Stress. Antioxidants (Basel). 2023 Jul 12;12(7):1412. doi: 10.3390/antiox12071412.


20. Deng S, Jin T, Zhang L, Bu H, Zhang P. Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1. Mol Med Rep. 2016 Nov;14(5):4124-4134. doi: 10.3892/mmr.2016.5735.


21. Kidokoro K, Satoh M, Nagasu H, Sakuta T, Kuwabara A, Yorimitsu D, Nishi Y, Tomita N, Sasaki T, Kashihara N. Tacrolimus induces glomerular injury via endothelial dysfunction caused by reactive oxygen species and inflammatory change. Kidney Blood Press Res. 2012;35(6):549-57. doi: 10.1159/000339494.


22. Chrzanowska M, Kamińska J, Głyda M, Duda G, Makowska E. Antioxidant capacity in renal transplant patients. Pharmazie. 2010 May;65(5):363-6. PMID: 20503930.


23. Długosz A, Srednicka D, Boratyński J. Wpływ takrolimusu na stres oksydacyjny i procesy wolnorodnikowe


Об авторах / Для корреспонденции


Автор для связи: Zahra Tolou-Ghamari – заместитель по исследованиям и технологиям, Исфаханский университет медицинских наук, Исфахан, Иран; e-mail: toloeghamari@pharm.mui.ac.ir


Похожие статьи


Бионика Медиа