DOI: https://dx.doi.org/10.18565/urology.2021.1.56-59
Б.Г. Гулиев, Б.К. Комяков, А.Э. Талышинский, М.У. Агагюлов
1) Кафедра урологии (зав. кафедрой – проф. Б. К. Комяков) Северо-Западного государственного медицинского университета им. И. И. Мечникова, Санкт-Петербург, Россия; 2) Центр урологии с робот-ассистированной хирургией Мариинской больницы (глав. врач – проф. О. В. Емельянов), Санкт-Петербург, Россия
1. Wrazidlo W., Brambs H.J., Lederer W., Schneider S., Geiger B., Fischer C.An alternative method of three-dimensional reconstruction from two-dimensional CT and MR data sets. Eur J Radiol. 1991;12(1):11–16. 2. Costello J.P., Olivieri L.J., Su L. et al. Incorporating Three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis. 2015;10(2):185–190. Doi: 10.1111/chd.12238. 3. Liaw C.-Y., Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017; 9(2): 024102. Doi: 10.1088/1758 5090/aa7279. 4. Yoshida K., Yokomizo A., Matsuda T. et al. The advantage of a ureteroscopic navigation system with magnetic tracking in comparison with simulated fluoroscopy in a phantom study. J Endourol. 2015;29(9):1059–1064. Doi: 10.1089/end.2015.0054. 5. Petretta M., Desando G., Grigolo B., Roseti L. 3D printing of musculoskeletal tissues: impact on safety and health at work. J Toxicol Environ Health A. 2019;82(16):891–912. Doi: 10.1080/15287394.2019. 6. Harb S.C., Rodriguez L.L., Vukicevic M., Kapadia S.R., Little S.H. Three-dimensional printing applications in percutaneous structural heart interventions. Circ Cardiovasc Imaging. 2019;12(10): e009014. Doi:10.1161/CIRCIMAGING.119.009014. 7. Tack P., Victor J., Gemmel P., Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. Doi: 10.1186/s12938-016-0236-4. 8. Porpiglia F., Amparore D., Checcucci E. et al. Current use of three-dimensional model technology in urology: A road map for personalised surgical planning. Eur Urol Focus. 2018;4(5):652–656. Doi: 10.1016/j.euf.2018.09.012. 9. Srisubat A., Potisat S., Lojanapiwat B., Setthawong V., Laopaiboon M. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst Rev. 2014;(11):CD007044. Doi: 10.1002/14651858. 10. Kumsar Ş., Aydemir H., Halis F., Köse O., Gökçe A., Adsan O. Value of preoperative stone scoring systems in predicting the results of percutaneous nephrolithotomy. Cent Eur J Urol. 2015;68(3):353–357. Doi: 10.5173/ceju.2015.552. 11. Miller N.L., Matlaga B.R., Lingeman J.E. Techniques for fluoroscopic percutaneous renal access. J Urol. 2007;178(1):15–23. 12. Andonian S., Scoffone C.M., Louie M.K. et al. Does imaging modality used for percutaneous renal access make a difference? A matched case analysis. J Endourol. 2013;27(1):24–28. Doi: 10.1089/end.2012.0347. 13. Macchi V., Picardi E., Inferrera A. et al. Anatomic and radiologic study of renal avascular plane (Brödel’s Line) and its potential relevance on percutaneous and surgical approaches to the kidney. J Endourol. 2018; 32(2):154–159. Doi: 10.1089/end.2017.0689. 14. Bogdanova R., Boulanger P., Zheng B. Depth perception of surgeons in minimally invasive surgery. Surg Innov. 2016;23(5):515–524. Doi: 10.1177/1553350616639141. 15. Vajsbaher T., Schultheis H., Francis N.K. Spatial cognition in minimally invasive surgery: A systematic review. BMC Surg. 2018;18(1):94–109. Doi: 10.1186/s12893-018-0416-1. 16. Gadzhiev N., Brovkin S., Grigoryev V. et al. Sculpturing in urology, or how to make percutaneous nephrolithotomy easier. J Endourol. 2015;29(5):512–517. Doi: 10.1089/end.2014.0656. 17. Audit commission for local authorities and the National health service in England and Wales. What seems to be the matter : communication between hospitals and patients. H.M.S.O; 1993. 75 p. 18. Hess B. Renal stone clinic survey: calcium stone formers’ self-declared understanding of and adherence to physician’s recommendations. Urolithiasis. 2017;45(4):363–370. Doi: 10.1007/s00240-016-0916-3. 19. Guarino J., Tennyson S., McCain G., Bond L., Shea K., King H. Rapid prototyping technology for surgeries of the pediatric spine and pelvis: benefits analysis. J Pediatr Orthop. 2007;27(8):955–960. Doi:10.1097/bpo.0b013e3181594ced. 20. Porpiglia F., Bertolo R., Checcucci E. et al. Development and validation of 3D printed virtual models for robot-assisted radical prostatectomy and partial nephrectomy: urologists’ and patients’ perception. World J Urol. 2018;36(2):201–207. Doi: 10.1007/s00345-017-2126-1. 21. Atalay H.A., Canat H.L., Ülker V., Alkan İ., Özkuvanci Ü., Altunrende F. Impact of personalized three-dimensional 3D-printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. Int Braz J Urol. 2017;43(3):470–475. Doi: 10.1590/S1677-5538.IBJU.2016.0441.
А в т о р д л я с в я з и: Б. Г. Гулиев – д.м.н., профессор кафедры урологии СЗГМУ им. Мечникова, руководитель центра урологии с робот-ассистированной хирургией, Санкт-Петербург, Россия; e-mail: gulievbg@mail.ru