DOI: https://dx.doi.org/10.18565/urology.2019.6.21-25
Б.Г. Гулиев, Б.К. Комяков, А.Э. Талышинский, Е.О. Стецик
1) Кафедра урологии (зав. – проф. Б. К. Комяков) Северо-Западного государственного медицинского университета им. И. И. Мечникова, Санкт-Петербург, Россия; 2) Центр урологии с робот-ассистированной хирургией Мариинской больницы (глав. врач – проф. О. В. Емельянов), Санкт-Петербург, Россия
1. Belien H., Biesmans H., Steenwerckx A., Bijnens E. Prebending of osteosynthesis plate using 3D printed models to treat symptomatic osacromiale and acromial fracture. J Exp. Orthop. 2017;4(1):34–38. Doi: 10.1186/s40634-017-0111-7. 2. Citak M., Kochsiek L., Gehrke T., et al. Preliminary results of a 3D printed acetabular component in the management of extensive defects. Hip International. 2018;28(3):266–271. Doi: 10.5301/hipint.5000561. 3. Archip N., Clatz O., Whalen S., et al. Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intraoperative MRI for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage. 2007;35:609–624. Doi: 10.1016/j.neuroimage.2006.11.060. 4. Ghizoni E., de Souza J. P. Raposo-Amaral C.E., et al. 3D-printed craniosynostosis model: new simulation surgical tool. World Neurosurgery. 2018;109:356–361. Doi: 10.1016/j.wneu.2017.10.025. 5. Turney B.W. A new model with an anatomically accurate human renal collecting system for training in fluoroscopy guided percutaneous nephrolithotomy access. J Endourol. 2014;28:360–363. Doi: 10.1089/end.2013.0616. 6. Bernhard J.C., Isotani S., Matsugasumi T., et al. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J. Urol. 2016;34:337–345. Doi: 10.1007/s00345-015-1632-2. 7. Atalay H., Canat H., Ülker V., et al. Impact of personalized three-dimensional (3D) printed pelvicalyceal system models on patient information in percutaneous nephrolithotripsy surgery: a pilot study. Intern. Braz J. Urol. 2017;43(3):470–475. Doi: 10.1590/S1677-5538.IBJU.2016.0441. 8. Wong N.C., Hoogenes J., Guo Y., et al. Utility of a printed bladder model for teaching minimally invasive urethrovesical anastomosis. Can. Urol. Assoc. J. 2017;11:321–322. Doi: 10.5489/cuaj.4262. 9. Alyaev Yu.G., Sirota E.S., Bezrukov E.A. et al. Nonbiological 3D-printing simulator for learning percutaneous nephrolithotomy. Urologiia. 2018;1:10–14. Russian (Аляев Ю.Г., Сирота Е.С., Безруков Е.А. и соавт. Небиологический 3D-печатный тренажер для освоения чрескожной нефролитотрипсии. Урология. 2018;1:10–14). 10. Turk C., Petrik A., Sarica K., et al. EAU Guidelines on interventional treatment for urolithiasis. Eur. Urol. 2016;69(3):475–482. Doi: 10.1016/j.eururo.2015.07.041. 11. Ghani K.R., Andonian S., Bultitude M., et al. Percutaneous nephrolithotomy: update, trends and future directions. Eur. Urol. 2016;70(2):382–396. Doi: 10.1016/j.eururo.2016.01.047. 12. Olcott E.W., Sommer F.G., Napel S. Accuracy of detection and measurement of renal calculi: In vitro comparison of three-dimensional spiral CT, radiography and nephrotomography. Radiology. 1997;204:19–25. Doi: 10.1148/radiology.204.1.9205217. 13. Hubert J., Blum A., Cormier L. et al. Three dimensional CT-scan reconstruction of renal calculi. A new tool for mapping-out staghorn calculi and follow-up of radiolucent stones. Eur. Urol. 1997;31:297–301. Doi: 10.1159/000474471. 14. Buchholz N.P. Three-dimensional CT scan stone reconstruction for planning of percutaneous surgery in a morbidly obese patient. Urol. Int. 2000;65:46–48. Doi: 10.1159/000064834. 15. Costello J.P., Olivieri L.J., Su L., et al. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit. Heart Dis. 2015;10:185–190. Doi: 10.1111/chd.12238. 16. Kukreja R., Desai M., Patel S., et al. Factors affecting blood loss during percutaneous nephrolithotomy: Prospective study. J Endourol. 2004;18:715–722. Doi: 10.1089/end.2004.18.715. 17. Turna B., Umul M., Demiryoguran S., et al. How do increasing stone surface area and stone configuration affect overall outcome of percutaneous nephrolithotomy? J Endourol. 2007;21:34–43. Doi: 10.1089/end.2005.0315. 18. Guliev B.G. The complications of percutaneous nephrolithotomy. Endoscopicheskaya chirurgia. 2008;1:33–35. Russian (Гулиев Б.Г. Осложнения перкутанной нефролитотрипсии. Эндоскопическая хирургия. 2008;1:33–35). 19. Stern J., Zeltser I.S., Pearle M.S. Percutaneous renal access simulators. J Endourol. 2007;21:270–273. Doi: 10.1089/end.2007.9981. 20. Rengier F., Mehndiratta A., Von Tengg-Kobligk H., et al. 3D printing based on imaging data: Review of medical applications. Int J. Comput. Assist. Radiol. Surg. 2010;5:335–341. Doi: 10.1007/s11548-010-0476-x. 21. PolettiA., Platon A., Rutschmann O.T. et al. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. Am J. Roentgenol. 2007;188:927–933. Doi: 10.2214/AJR.06.0793.
А в т о р д л я с в я з и: Б. Г. Гулиев – д.м.н., профессор кафедры урологии Северо-Западного государственного
медицинского университета им. И. И. Мечникова, Санкт-Петербург, Россия