Клеточные технологии в модификации сетчатых материалов, применяемых в урологии


DOI: https://dx.doi.org/10.18565/urology.2021.2.94-99

И.В. Майбородин, Г.Ю. Ярин, И.А. Вильгельми, С.В. Марчуков, В.И. Майбородина, Н.В. Оноприенко

1) ФГБУН «Институт химической биологии и фундаментальной медицины» СО РАН, Новосибирск, Россия; 2) Институт молекулярной патологии и патоморфологии, ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины» Министерства науки и высшего образования Российской Федерации, Новосибирск, Россия
На основании анализа литературы изучено влияние клеточных технологий на результаты имплантации сетчатых материалов. В научной литературе последних лет содержится большой объем данных, посвященных изучению сетчатых конструкций и возможностей их модификации с использованием мультипотентных стромальных клеток (МСК) для имплантации пациентам с целью коррекции тканевых дефектов и поддержки органов малого таза. Однако идеальный имплантат еще не создан. Необходимы дополнительные исследования с более длительным периодом наблюдения, чтобы определить наиболее успешные и безопасные методы и материалы для восстановления патологически измененных или утраченных тканей и перехода к клиническим испытаниям. Также еще предстоит прийти к однозначному пониманию наилучших источников МСК, способов стимуляции пролиферации, консервации и доставки этих клеток в нужные ткани организма, досконально изучить причины неэффективности и риски развития различных осложнений, особенно в отдаленные сроки. Прогресс урологической имплантологии в современных условиях безусловно будет связан с внедрением современных материалов и технологий, в том числе и с использованием МСК.

Литература


1. Ulrich D., Edwards S.L., Su K., Tan K.S., White J.F., Ramshaw J.A., Lo C., Rosamilia A., Werkmeister J.A., Gargett C.E. Human endometrial mesenchymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng Part A. 2014;20(3-4):785–798. https://doi.org/10.1089/ten.TEA.2013.0170


2. Edwards S.L., Ulrich D., White J.F., Su K., Rosamilia A., Ramshaw J.A., Gargett C.E., Werkmeister J.A. Temporal changes in the biomechanical properties of endometrial mesenchymal stem cell seeded scaffolds in a rat model. Acta Biomater. 2015;13:286–294. https://doi.org/10.1016/j.actbio.2014.10.043


3. Martin-Piedra M.A., Garzón I., Gómez-Sotelo A., Garcia-Abril E., Jaimes-Parra B.D., López-Cantarero M., Alaminos M., Campos A. Generation and evaluation of novel stromal cell-containing tissue engineered artificial stromas for the surgical repair of abdominal defects. Biotechnol J. 2017;12(12). https://doi.org/10.1002/biot.201700078


4. Zhao J., Xu J.J. Experimental study on application of polypropylene hernia of fat stem cells in rats. Eur Rev Med Pharmacol Sci. 2018;22(18):6156-6161. https://doi.org/10.26355/eurrev_201809_15957


5. Emmerson S., Mukherjee S., Melendez-Munoz J., Cousins F., Edwards S.L., Karjalainen P., Ng M., Tan K.S., Darzi S., Bhakoo K., Rosamilia A., Werkmeister J.A., Gargett C.E. Composite mesh design for delivery of autologous mesenchymal stem cells influences mesh integration, exposure and biocompatibility in an ovine model of pelvic organ prolapse. Biomaterials. 2019;225:119495. https://doi.org/10.1016/j.biomaterials.2019.119495.


6. Kollhoff D.M., Cheng E.Y., Sharma A.K. Urologic applications of engineered tissue. Regen Med. 2011;6(6):757–765. https://doi.org/10.2217/rme.11.91


7. Chen B., Dave B. Challenges and future prospects for tissue engineering in female pelvic medicine and reconstructive surgery. Curr Urol Rep. 2014;15(8):425. https://doi.org/10.1007/s11934-014-0425-2


8. Hanson S., D’Souza R.N., Hematti P. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering. Tissue Eng Part A. 2014;20(15–16):2162-8. https://doi.org/10.1089/ten.tea.2013.0359


9. Jessop Z.M., Javed M., Otto I.A., Combellack E.J., Morgan S., Breugem C.C., Archer C.W., Khan I.M., Lineaweaver W.C., Kon M., Malda J., Whitaker I.S. Combining regenerative medicine strategies to provide durable reconstructive options: auricular cartilage tissue engineering. Stem Cell Res Ther. 2016;7:19. https://doi.org/10.1186/s13287-015-0273-0


10. Gao Y., Krpata D.M., Criss C.N., Liu L., Posielski N., Rosen M.J., Novitsky Y.W. Effects of mesenchymal stem cell and fibroblast coating on immunogenic potential of prosthetic meshes in vitro. Surg Endosc. 2014;28(8):2357-67. https://doi.org/10.1007/s00464-014-3470-5


11. Pavlov V.N., Yashchuk A.G., Musin I.I., Mufazalova N.A., Shangina O.R., Fatkullina I.B., Danilko K.V., Kulavskiy V.A., Mehtieva E.R., Molokanova A.R. Experimental morphological rationale for the use of cultures of multipotent mesenchymal stem cells in combination with biomaterials in the reconstruction of the pelvic floor. Urologiia. 2019;(4):32–37. Russian (Павлов В.Н., А.Г. Ящук, И.И. Мусин, Н.А. Муфазалова, О.Р. Шангина, И.Б. Фаткуллина, К.В. Данилко, В.А. Кулавский, Э.Р. Мехтиева, А.Р. Молоканова Экспериментальное морфологическое обоснование применения культур мультипотентных мезенхимальных стволовых клеток в комбинации с биоматериалами в реконструкции тазового дна. Урология. 2019;(4):32–37). https://doi.org/10.18565/urology.2019.4.32–37


12. Brown B.N., Londono R., Tottey S., Zhang L., Kukla K.A., Wolf M.T., Daly K.A., Reing J.E., Badylak S.F. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta Biomater. 2012;8(3):978–987. https://doi.org/10.1016/j.actbio.2011.11.031


13. Mukherjee S., Darzi S., Paul K., Werkmeister J.A., Gargett C.E. Mesenchymal stem cell-based bioengineered constructs: foreign body response, cross-talk with macrophages and impact of biomaterial design strategies for pelvic floor disorders. Interface Focus. 2019;9(4):20180089. https://doi.org/10.1098/rsfs.2018.0089


14. S.F. van Osch G.J., Bayon Y., Lange J.F., Bastiaansen-Jenniskens Y.M. Biomaterials influence macrophage-mesenchymal stem cell interaction In Vitro. Tissue Eng Part A. 2016;22(17–18):1098–1107. https://doi.org/10.1089/ten.TEA.2016.0162


15. Gao Y., Liu L.J., Blatnik J.A., Krpata D.M., Anderson J.M., Criss C.N., Posielski N., Novitsky Y.W. Methodology of fibroblast and mesenchymal stem cell coating of surgical meshes: a pilot analysis. J Biomed Mater Res B Appl Biomater. 2014;102(4):797–805. https://doi.org/10.1002/jbm.b.33061


16. Blázquez R., Sánchez-Margallo F.M., Álvarez V., Usón A., Marinaro F., Casado J.G. Fibrin glue mesh fixation combined with mesenchymal stem cells or exosomes modulates the inflammatory reaction in a murine model of incisional hernia. Acta Biomater. 2018;71:318–329. https://doi.org/10.1016/j.actbio.2018.02.014


17. Maiborodin I.V., Kolesnikov I.S., Sheplev B.V., Ragimova T.M., Kovyntsev A.N., Kovyntsev D.N., Shevela A.I. Adjusting gingival tissues morphology after dental implantation with fibrin use. Stomatologiia (Mosk). 2009;88(1):9-13. Russian (Майбородин И.В., Колесников И.С., Шеплев Б.В., Рагимова Т.М., Ковынцев А.Н., Ковынцев Д.Н., Шевела А.И. Морфология прилежащих тканей десны после дентальной имплантации с применением препаратов фибрина. Стоматология. 2009;88(1):9–13).


18. Handel M., Hammer T.R., Nooeaid P., Boccaccini A.R., Hoefer D. 45S5-Bioglass(®)-based 3D-scaffolds seeded with human adipose tissue-derived stem cells induce in vivo vascularization in the CAM angiogenesis assay. Tissue Eng Part A. 2013;19(23–24):2703–2712. https://doi.org/10.1089/ten.TEA.2012.0707


19. Mishra R., Roux B.M., Posukonis M., Bodamer E., Brey E.M., Fisher J.P., Dean D. Effect of prevascularization on in vivo vascularization of poly(propylene fumarate)/fibrin scaffolds. Biomaterials. 2016;77:255–266. https://doi.org/10.1016/j.biomaterials.2015.10.026


20. Nowacki M., Jundziłł A., Nazarewski Ł., Kotela A., Kloskowski T., Skopińska-Wisniewska J., Bodnar M., Łukasiewicz A., Nazarewski S., Kotela I., Kucharzewski M., Pokrywczyńska M., Marszałek A., Drewa T. Blood vessel matrix seeded with cells: a better alternative for abdominal wall reconstruction-a long-term study. Biomed Res Int. 2015;2015:890613. https://doi.org/10.1155/2015/890613


21. Bogdan V.G., Zafranskaya M.M., Gain Y.M., Demidchik Y.E., Bagatka S.S., Ivanchik G.I. Modification of collagen formation by mesenchymal stem cells isolated from human adipose tissue in culture and after autotransplantation for abdominal hernia plasty. Bull Exp Biol Med. 2013;156(1):152–155. Russian (Богдан В.Г., Зафранская М.М., Гаин Ю.М., Демидчик Ю.Е., Багатка С.С., Иванчик Г.И. Модификация коллагенообразования мезенхимальными стволовыми клетками из жировой ткани человека в культуре и при аутотрансплантации при лечении послеоперационных грыж живота. Клеточные технологии в биологии и медицине. 2013;(3):159–163). https://doi.org/10.1007/s10517-013-2299-6


22. Spelzini F., Manodoro S., Frigerio M., Nicolini G., Maggioni D., Donzelli E., Altomare L., Farè S., Veneziano F., Avezza F., Tredici G., Milani R. Stem cell augmented mesh materials: an in vitro and in vivo study. Int Urogynecol J. 2015;26(5):675-83. https://doi.org/10.1007/s00192-014-2570-z


23. Majumder A., Gao Y., Sadava E.E., Anderson J.M., Novitsky Y.W. Cell-coating affects tissue integration of synthetic and biologic meshes: comparative analysis of the onlay and underlay mesh positioning in rats. Surg Endosc. 2016;30(10):4445-53. https://doi.org/10.1007/s00464-016-4764-6


24. Li Q., Wang J., Liu H., Xie B., Wei L. Tissue-engineered mesh for pelvic floor reconstruction fabricated from silk fibroin scaffold with adipose-derived mesenchymal stem cells. Cell Tissue Res. 2013;354(2):471–480. https://doi.org/10.1007/s00441-013-1719-2


25. Cheng H., Zhang Y., Zhang B., Cheng J., Wang W., Tang X., Teng P., Li Y. Biocompatibility of polypropylene mesh scaffold with adipose-derived stem cells. Exp Ther Med. 2017;13(6):2922–2926. https://doi.org/10.3892/etm.2017.4338


26. Dolce C.J., Stefanidis D., Keller J.E., Walters K.C., Newcomb W.L., Heath J.J., Norton H.J., Lincourt A.E., Kercher K.W., Heniford B.T. Pushing the envelope in biomaterial research: initial results of prosthetic coating with stem cells in a rat model. Surg Endosc. 2010;24(11):2687–2693. https://doi.org/10.1007/s00464-010-1026-x


27. Mestak O., Matouskova E., Spurkova Z., Benkova K., Vesely P., Mestak J., Molitor M., Pombinho A., Sukop A. Mesenchymal stem cells seeded on cross-linked and noncross-linked acellular porcine dermal scaffolds for long-term full-thickness hernia repair in a small animal model. Artif Organs. 2014;38(7):572–579. https://doi.org/10.1111/aor.12224


28. Klinger A., Kawata M., Villalobos M., Jones R.B., Pike S., Wu N., Chang S., Zhang P., DiMuzio P., Vernengo J., Benvenuto P., Goldfarb R.D., Hunter K., Liu Y., Carpenter J.P., Tulenko T.N. Living scaffolds: surgical repair using scaffolds seeded with human adipose-derived stem cells. Hernia. 2016;20(1):161–170. https://doi.org/10.1007/s10029-015-1415-0


29. Ding J., Han Q., Deng M., Song X.C., Chen C., Ai F.F., Zhu L., Zhao R.C. Induction of human umbilical cord mesenchymal stem cells into tissue-forming cells in a murine model: implications for pelvic floor reconstruction. Cell Tissue Res. 2018;372(3):535–547. https://doi.org/10.1007/s00441-017-2781-y


30. Mendelson K., Aikawa E., Mettler B.A., Sales V., Martin D., Mayer J.E., Schoen F.J. Healing and remodeling of bioengineered pulmonary artery patches implanted in sheep. Cardiovasc Pathol. 2007;16(5):277–282. https://doi.org/10.1016/j.carpath.2007.03.008


31. Maĭborodin I.V., Shevela A.I., Anishchenko V.V., Matveeva V.A., Shevela A.A., Drovosekov M.N., Vlasov V.V. The peculiarities of rat tissue reactions to intraperitoneal implants made out of biodegradable polyhydroxyalkanoates. Morfologiia. 2011;139(2):62–66. Russian (Майбородин И.В., Шевела А.И., Анищенко В.В., Матвеева В.А., Шевела А.А., Дровосеков М.Н., Власов В.В. Особенности реакции тканей крыс на внутрибрюшинные имплантаты из биодеградируемого полигидроксиалканоата. Морфология. 2011;139(2):62–66).


32. Maiborodin I.V., Shevela A.I., Morozov V.V., Novikova Y.V., Matveeva V.A., Drovosekov M.N., Barannik M.I. Reaction of the rat tissues to implantation of polyhydroxyalkanoate films and ultrafine fibers. Bull Exp Biol Med. 2013;154(3):379–384. Russian (Майбородин И.В., Шевела А.И., Морозов В.В., Новикова Я.В., Матвеева В.А., Дровосеков М.Н., Баранник М.И. Реакция тканей крыс на имплантацию полигидроксиалканоата в состоянии пленок и ультратонких волокон. Бюлл экспер биол мед. 2012;154(9):365–370). https://doi.org/10.1007/s10517-013-1955-1


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: И. В. Майбородин – д.м.н., профессор, главный научный сотрудник лаборатории технологий управления здоровьем, ФГБУН «Институт химической биологии и фундаментальной медицины СО РАН», Новосибирск, Россия; главный научный сотрудник лаборатории клеточной биологии и цитологии Института молекулярной патологии и патоморфологии, ФГБНУ «Федеральный исследовательский центр фундаментальной и трансляционной медицины» Министерства науки и высшего образования Российской Федерации, Новосибирск, Россия; e-mail: imai@mail.ru


Похожие статьи


Бионика Медиа