Контроль образования биопленок в урологической практике


DOI: https://dx.doi.org/10.18565/urology.2022.1.81-88

А.В. Зайцев, А.О. Васильев, А.А. Ширяев, Ю.А. Ким, О.А. Арефьева, А.В. Говоров, Д.Ю. Пушкарь

1) ФГБОУ ВО «Московский государственный медико-стоматологический университет им. А. И. Евдокимова» Минздрава России, Москва, Россия; 2) ГКБ им. С. И. Спасокукоцкого Департамента здравоохранения г. Москвы, Москва, Россия; 3) ГБУ «Научно-исследовательский институт организации здравоохранения и медицинского менеджмента» Департамента здравоохранения г. Москвы, Москва, Россия
Инфекции мочевыводящих путей (ИМП) на протяжении долгого периода времени составляют число наиболее широко распространенных заболеваний. В структуре общей инфекционной заболеваемости ИМП занимают 2-е место после ОРВИ. Ежегодно исследователи отмечают возрастающее количество мутаций в геномах бактерий, вызывающих инфекционные заболевания, что приводит к образованию все более агрессивных форм возбудителей. Пациенты с инфекционными заболеваниями органов мочевыделительной системы имеют наиболее высокий риск формирования биопленок, частота формирования которых прямо пропорциональна длительности нахождения уретрального катетера и составляет более половины от числа всех нозокомиальных инфекций. Наличие устойчивых штаммов патогенных бактерий и развитие бактериальных биопленок являются основной проблемой в лечении инфекций органов мочевыделительной системы. Возрастающее число госпитальных штаммов нозокомиальных бактерий увеличивает койко-день в послеоперационном периоде, частоту повторной госпитализации и количество используемых антибактериальных препаратов. В свете возрастающей антибактериальной резистентности резко увеличивается количество использования медицинских ресурсов, что в конечном счете приводит к увеличению стоимости лечения. Наряду с этим селекция резистентных штаммов ставит на первый план как рациональное применение антибактериальных препаратов, так и поиск альтернативных методов терапии. Проведенный обзор публикаций по проблеме образования бактериальных биопленок в урологической практике демонстрирует обновленную информацию о роли ферментов, пробиотиков и бактериофагов, препятствующих формированию биопленок на различных медицинских биоматериалах, таких как уретральные катетеры.

Литература


1. Venkatesan N., Perumal G., Doble M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol. 2015;10(11):1743–1750. Doi: 10.2217/fmb.15.69.


2. Chevalier M, Ranque S., Prêcheur I. Oral fungal-bacterial biofilm mo.els in vitro: a review. Med Mycol. 2018;56(6):653–667. Doi: 10.1093/mmy/myx111.


3. Marrie T.J., Nelligan J., Costerton J.W. A scanning an. transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation. 1982;66(6):1339–1341.


4. Del Pozo J.L. Biofilm-related disease. Expert Rev Anti Infect Ther. 2018;16(1):51–65. Doi: 10.1080/14787210.2018.1417036.


5. Holá V., Růzicka F. Biofilmové infekce mocových katétrů. Urinary catheter biofilm infections. Epidemiol Mikrobiol Imunol. 2008;57(2):47–52.


6. Perepanova T.S. The value of infections with the formation of biofilms in urology. Effektivnaya farmakoterariya. 2013;37:18–27. Russian (Перепанова Т.С. Значение инфекций, обусловленных образованием биопленок, в урологической практике. Эффективная фармакотерапия. 2013;37:18–27).


7. Tarchouna M., Ferjani A., Ben-Selma W., et al. Distribution of uropathogenic virulence genes in Escherichia coli isolated from patients with urinary tract infection. Int J Infect Dis. 2013;17(6):e450–3. Doi: 10.1016/j.iji.2013.01.025.


8. López-Banda D.A., Carrillo-Casas E.M., Leyva-Leyva M., et al. Identification of virulence factors genes in Escherichia coli isolates from women with urinary tract infection in Mexico. Biomed Res Int. 2014;2014:959206. Doi: 10.1155/2014/959206.


9. Caldwell D.E. Cultivation and study of biofilm communities. In Lappin Scott H.M., Costerton J.W. eds, Microbial Biofilms. Cambridge: Cambridge University Press, 1995: 64–79.


10. Brown M.R.W. The role of the envelope in resistance. In Brown MRW ed. Resistance of Pseudomonas aeruginosa. London: Wiley, 1997:71–107.


11. Cozens R.M., Tuomanen E., Tosch W. Evaluation of the bactericidal activity of betta-lactam antibiotics upon slowly growing bacteria cultured in the chemostat. Antimicrob Agents Chemother. 1986;29:797–802.


12. Choong S., Whitfield H. Biofilms and their role in infections in urology. BJU Int. 2000;86(8):935–941. Doi: 10.1046/j.1464-410x.2000.00949.x.


13. Trieu-Cuot P., Carlier C., Martin P., et al. Plasmi. transfer by conjugation from Escherichia coli to gram- positive bacteria. FEMS Microbiol Lett. 1987;48:289–294.


14. Costerton J.W. Introduction to biofilm. Int J Antimicrobial Agents. 1999;11:217–221.


15. Hola V., Ruzicka F., Horka M. Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques. FEMS Immunol Med Microbiol. 2010;59(3):525–528. Doi: 10.1111/j.1574-695X.2010.00703.x.


16. Gunardi W.D., Karuniawati A., Umbas R., et al. Biofilm-Producing Bacteria and Risk Factors (Gender and Duration of Catheterization) Characterized as Catheter-Associated Biofilm Formation. Int J Microbiol. 2021;2021:8869275. Doi: 10.1155/2021/8869275.


17. Swidsinski A., Mendling W., Loening-Baucke V., et al. An adherent Gardnerella vaginalis biofilm persists on the vaginal epithelium after standard therapy with oral metronidazole. Am J Obstet Gynecol. 2008;198(1):97.e1–6. Doi: 10.1016/j.ajog.2007.06.039.


18. Tenke P., Kovacs B., Jäckel M., et al. The role of biofilm infection in urology. World J Urol. 2006;24(1):13–20. Doi: 10.1007/s00345-005-0050-2.


19. Nickel JC. Catheter-associated urinary tract infection: new perspectives on old problems. Can J Infect Control. 1991;6:38–42.


20. Mosayyebi A., Lange D., Yann Yue Q., et al. Reducing deposition of encrustation in ureteric stents by changing the stent architecture: A microfluidic-based investigation. Biomicrofluidics. 2019;13(1):014101. Doi: 10.1063/1.5059370.


21. Rebl H., Renner J., Kram W., et al. Prevention of Encrustation on Ureteral Stents: Which Surface Parameters Provide Guidance for the Development of Novel Stent Materials? Polymers (Basel). 2020;12(3):558. Doi: 10.3390/polym12030558.


22. Wasfi R., Hamed S.M., Amer M.A., et al. Proteus mirabilis Biofilm: Development and Therapeutic Strategies. Front Cell Infect Microbiol. 2020;10:414. Doi: 10.3389/fcimb.2020.00414.


23. Yuan F, Huang Z, Yang T, et al. Pathogenesis of Proteus mirabilis in Catheter-Associated Urinary Tract Infections. Urol Int. 2021;10:1–8. Doi: 10.1159/000514097.


24. Lebeaux D., Ghigo J.M., Beloin C. Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510–543. Doi: 10.1128/MMBR.00013-14.


25. Reid G., Habash M., Vachon D., et al. Oral fluoroquinolone therapy results in drug adsorption on ureteral stents and prevention of biofilm formation. Int J Antimicrob Agents. 2001;17(4):317–319; discussion 319–320. Doi: 10.1016/s0924-8579(00)00353-8.


26. Reid G. Biofilms in infectious diseases and on medical devices. Int J Antimicrob Agents. 1999;11:223–226.


27. Magana M., Sereti C., Ioannidis A., et al. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev. 2018;31(3):e00084-16. Doi: 10.1128/CMR.00084-16.


28. Mlynek K.D., Callahan M.T., Shimkevitch A.V., et al. Effects of Low-Dose Amoxicillin on Staphylococcus aureus USA300 Biofilms. Antimicrob Agents Chemother. 2016;60(5):2639–2651. Doi: 10.1128/AAC.02070-15.


29. Ramachandra M., Mosayyebi A., Carugo D., et al. Strategies to Improve Patient Outcomes and QOL: Current Complications of the Design and Placements of Ureteric Stents. Res Rep Urol. 2020;12:303–314. Doi: 10.2147/RRU.S233981.


30. Díez-Aguilar M., Cantón R. New microbiological aspects of Fosfomycin. Rev Esp Quimioter. 2019; 32(Suppl 1): 8–18.


31. Sugathan S., Mandal J. An invitro experimental study of the effect of fosfomycin in combination with amikacin, ciprofloxacin or meropenem on biofilm formation by multidrug-resistant urinary isolates of Escherichia coli. J Med Microbiol. 2019;68(12):1699–1706. Doi: 10.1099/jmm.0.001061.


32. Rodríguez-Martínez J., Ballesta S., Pascual A. Activity and penetration of fosfomycin, ciprofloxacin, amoxicillin/clavulanic acid and co-trimoxazole in Escherichia coli and Pseudomonas aeruginosa biofilm. Int J Antimicrob Agents. 2007;30(4):366–368. Doi: 10.1016/j.ijantimicag.2007.05.005.


33. van Mens S.P., ten Doesschate T., Kluytmans-van den Bergh MFQ, et al. Fosfomycin Etest for Enterobacteralesceae: Interobserver and interlaboratory agreement. Int J Antimicrob Agents. 2018;52:678–681. Doi: 10.1016/j.ijantimicag.2018.06.014.


34. Shi J., Mao N.F., Wang L., et al. Efficacy of combined vancomycin and fosfomycin against methicillin-resistant Staphylococcus aureus in biofilms in vivo. PLoS One. 2014;9:1–14. Doi: 10.1371/journal.pone.0113133.


35. Mihailescu R., Tafin U.F., Corvec S., et al. High activity of fosfomycin and rifampin against methicillin-resistant Staphylococcus aureus biofilm in vitro and in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2014;58(5):2547–2553. Doi: 10.1128/AAC.02420-12.


36. Tang H.J., Chen C.C., Cheng K.C., et al. In vitro efficacy of fosfomycin-containing regimens against methicillin-resistant Staphylococcus aureus in biofilms. J Antimicrob Chemother. 2012;67(4):944–950. Doi: 10.1093/jac/dkr535.


37. Chai D., Liu X., Wang R., et al. Efficacy of Linezolid and Fosfomycin in Catheter-Related Biofilm Infection Caused by Methicillin-Resistant Staphylococcus aureus. Biomed Res Int. 2016;2016:6413982. Doi: 10.1155/2016/6413982.


38. Oliva A., Furustrand Tafin U., Maiolo E.M., et al. Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob Agents Chemother. 2014;58(3):1284–1293. Doi: 10.1128/AAC.02583-12.


39. Díez-Aguilar M., Morosini M.I., Köksal E., et al. Use of Calgary and Microfluidic BioFlux Systems To Test the Activity of Fosfomycin and Tobramycin Alone and in Combination against Cystic Fibrosis Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother. 2017;62(1):e01650–1617. Doi: 10.1128/AAC.01650-17.


40. Anderson G.G., Kenney T.F., Macleod D.L., et al. Eradication of Pseudomonas aeruginosa biofilms on cultured airway cells by a fosfomycin/tobramycin antibiotic combination. Pathog Dis. 2013;67(1):39–45. Doi: 10.1111/2049-632X.12015.


41. Algburi A., Comito N., Kashtanov D., et al. Control of Biofilm Formation: Antibiotics and Beyond. Appl Environ Microbiol. 2017;83(3):e02508–2516. Doi: 10.1128/AEM.02508-16.


42. de Melo Pereira G.V., Coelho B.D.O., Júnior A.I.M., et al. How to select a probiotic? A review and update of methods and criteria. Biotechnol. Adv. 2018;36:2060–2076. Doi: 10.1016/j.biotechadv.2018.09.003.


43. Bermudez-Brito M., Plaza-Díaz J., Muñoz-Quezada S., et al. Probiotic Mechanisms of Action. Ann. Nutr. Metab. 2012;61:160–174. Doi: 10.1159/000342079.


44. Fracchia L., Cavallo M., Giovanna M., et al. Biosurfactants and Bioemulsifiers Biomedical and Related Applications–Present Status and Future Potentials. Biomed. Sci. Eng. Technol. 2012:325–370. Doi: 10.5772/23821.


45. Gudiña EJ, Fernandes EC, Teixeira JA, et al. Antimicrobial and anti-adhesive activities of cell-bound biosurfactant from Lactobacillus agilis CCUG31450. RSC Adv. 2015;5:90960–90968. Doi: 10.1039/C5RA11659G.


46. Morais I.M.C., Cordeiro A.L., Teixeira G.S., et al. Biological and physicochemical properties of biosurfactants produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65. Microb. Cell Factories. 2017;16:1–15. Doi: 10.1186/s12934-017-0769-7.


47. Sharma D., Saharan B.S. Functional characterization of biomedical potential of biosurfactant produced by Lactobacillus helveticus. Biotechnol. Rep. 2016;11:27–35. Doi: 10.1016/j.btre.2016.05.001.


48. Sambanthamoorthy K., Feng X., Patel R., et al. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol. 2014;14:197. Doi: 10.1186/1471-2180-14-197.


49. Okuda K., Zendo T., Sugimoto S., et al. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother. 2013;57(11):5572–5579. doi: 10.1128/AAC.00888-13.


50. Barzegari A., Kheyrolahzadeh K., Hosseiniyan Khatibi S.M., et al. The Battle of Probiotics and Their Derivatives Against Biofilms. Infect Drug Resist. 2020;13:659–672. Doi: 10.2147/IDR.S232982.


51. Al-Mathkhury H.J.F., Ali A.S., Ghafil J.A. Antagonistic effect of bacteriocin against urinary catheter associated Pseudomonas aeruginosa biofilm. N. Am. J. Med. Sci. 2011;3:367–370. Doi: 10.4297/najms.2011.3367.


52. Shahandashti R.V., Kermanshahi R.K., Ghadam P. The inhibitory effect of bacteriocin produced by Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum ATCC 8014 on planktonic cells and biofilms of Serratia marcescens. Turk. J. Med. Sci. 2016;46:1188–1196. Doi: 10.3906/sag-1505-51.


53. Ray Mohapatra A., Jeevaratnam K. Inhibiting bacterial colonization on catheters: Antibacterial and antibiofilm activities of bacteriocins from Lactobacillus plantarum SJ33. J Glob Antimicrob Resist. 2019;19:85–92. Doi: 10.1016/j.jgar.2019.02.021.


54. Liu Z., Zhang Z., Qiu L., et al. Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04. J Dairy Sci. 2017;100(9):6895–6905. Doi: 10.3168/jds.2016-11944.


55. Sharma V.. Harjai K., Shukla G. Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiol. 2018;63:181–190. Doi: 10.1007/s12223-017-0545-4.


56. Kim Y., Oh S., Kim S.H. Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem Biophys Res Commun. 2009; 379(2):324–329. Doi: 10.1016/j.bbrc.2008.12.053.


57. Abid Y., Casillo .A, Gharsallah H., et al. Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. Int. J. Biol. Macromol. 2018;108:719–728. Doi: 10.1016/j.ijbiomac.2017.10.155.


58. Izano E.A., Wang H., Ragunath C., et al. Detachment and killing of Aggregatibacter actinomycetemcomitans biofilms by dispersin B and SDS. J Dent Res. 2007;86:618–622. Doi:10.1177/154405910708600707.


59. Whitchurch C.B., Tolker-Nielsen T., Ragas P.C., et al. Extracellular DNA required for bacterial biofilm formation. Science. 2002;295:1487. Doi:10.1126/science.295.5559.1487.


60. Kalpana B.J., Aarthy S., Pandian S.K. Antibiofilm activity of α-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial pathogens. Appl Biochem Biotechnol. 2012;167:1778–1794. Doi:10.1007/s12010-011-9526-2.


61. Craigen B., Dashiff A., Kadouri D.E. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J. 2011;5:21–31. Doi:10.2174/1874285801105010021.


62. Singh V., Verma N., Banerjee B., et al. Enzymatic degradation of bacterial biofilms using Aspergillus clavatus MTCC 1323. Microbiology. 2015;84:59–64. Doi:10.1134/S0026261715010130.


63. Algburi A., Comito N., Kashtanov D., et al. Control of Biofilm Formation: Antibiotics and Beyond. Appl Environ Microbiol. 2017;83(3):e02508–2516. Doi: 10.1128/AEM.02508-16.


64. Donelli G., Francolini I., Romoli D., et al. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother. 2007;51:2733–2740. Doi:10.1128/AAC.01249-06.


65. Harper DR, Parracho HM, Walker J, et al. Bacteriophages and biofilms. Antibiotics. 2014;3:270–284. Doi: 10.3390/antibiotics3030270.


66. Shariati A., Azimi T., Ardebili A., et al. Insertional inactivation of oprD in carbapenem-resistant Pseudomonas aeruginosa strains isolated from burn patients in Tehran Iran. New Microbes New Infect. 2018;21:75–80. Doi: 10.1016/j.nmni.2017.10.013.


67. Fajardo A., Martínez-Martín N., Mercadillo M., et al. The neglected intrinsic resistome of bacterial pathogens. PloS ONE. 2008;3:e1619. Doi: 10.1371/journal.pone.0001619.


68. Yan J., Mao J., Xie J. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs. 2014;28(3):265–274. Doi: 10.1007/s40259-013-0081-y.


69. Hall A.R., De Vos D., Friman V.-P., et al. Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol. 2012;78:5646–5652. Doi: 10.1128/AEM.00757-12.


70. Hanlon G.W. Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents. 2007;30:118–128. Doi: 10.1016/j.ijantimicag.2007.04.006.


71. Briers Y., Schmelcher M., Loessner M.J., et al. The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144. Biochem Biophys Res Commun. 2009;383:187–191. Doi: 10.1016/j.bbrc.2009.03.161.


72. Hraiech S., Bregeon F., Rolain J.-M. Bacteriophage-base. therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status. Drug Design Dev Ther. 2015;9:3653. Doi: 10.2147/DDDT.S53123.


73. Pei R., Lamas-Samanamud G.R. Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol. 2014;80:5340–5348. Doi: 10.1128/AEM.01434-14.


74. Ceri H., Olson M.E., Stremick C., et al. The Calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 1999;37:1771–1776.


75. Chegini Z., Khoshbayan A., Taati Moghadam M., et al. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: a review. Ann Clin Microbiol Antimicrob. 2020;19(1):45. Doi: 10.1186/s12941-020-00389-5.


76. Vasilyev A.O., Sazonova N.A., Melnikov V., et al. Experience in the use of a complex antibacterial and anesthetic drug based on bacteriophages in a gel form in women who have undergone various instrumental and therapeutic-diagnostic manipulations. Gynecology. 2020;22(3):42–48. Russian (Васильев А.О., Сазонова Н.А., Мельников В.Д., и др. Опыт применения комплексного антибактериального и обезболивающего препарата на основе бактериофагов в гелевой форме у женщин, перенесших различные инструментальные и лечебно-диагностические манипуляции. Гинекология. 2020;22(3):42–48).


77. Vasilyev A.O., Zaitsev A.V., Shiryaev A.A., et al. Bacteriophage therapy in the treatment of elderly patients with infectious complications of the lower urinary tract. Clinical gerontology. 2020;26(1-2):22–28. Russian (Васильев А.О., Зайцев А.В., Ширяев А.А., и др. Бактериофаготерапия в лечении пожилых пациентов с инфекционными осложнениями нижних мочевых путей. Клиническая геронтология. 2020;26(1−2):22−28).


78. Cadieux P., Watterson J.D., Denstedt J., et al. Potential application of polyisobutylene-polystyrene and a Lactobacillus protein to reduce the risk of device-associated urinary tract infections. Colloids Surf. B Biointerfaces. 2003;28:95–105. Doi: 10.1016/S0927-7765(02)00147-9.


79. Kim A.R., Ahn K.B., Yun CH, et al. Lactobacillus plantarum Lipoteichoic Aci. Inhibits Oral Multispecies Biofilm. J. Endod. 2019;45:310–315. Doi: 10.1016/j.joen.2018.12.007.


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: А. А. Ширяев – аспирант кафедры урологии Московского государственного медико-стоматологического университета им. А. И. Евдокимова, Москва, Россия; e-mail: phd.shiryaev@gmail.com


Похожие статьи


Бионика Медиа