Физиология вегетативной регуляции функций почек и мочевого пузыря. Клиническая значимость


DOI: https://dx.doi.org/10.18565/urology.2023.1.114-118

В.Б. Бердичевский, Б.А. Бердичевский, Е.В. Сапоженкова, В.А. Шидин, А.Р. Гоняев, И.В. Павлова, А.Л. Болдырев

1) Федеральное государственное бюджетное образовательное учреждение высшего образования «Тюменский государственный медицинский университет» Министерства здравоохранения Российской Федерации, Тюмень, Россия; 2) ГБУЗ ТО «Областная клиническая больница № 2», Тюмень, Россия; 3) ООО МСЧ «Нефтяник», Тюмень, Россия
В представленном литературном обзоре отражены результаты поиска научных исследований в базах данных PubMed, Elibraru.ru с использованием ключевых слов «вегетативная регуляция», «функция почек», «функция мочевого пузыря», «мониторирование ЭКГ», «ПЭТ/КТ головного мозга». Анализировались публикации по вегетативному регулированию функций мочевого пузыря, контролю за артериальным давлением, частоте сердечных сокращений и специализированным функцям нефрона, находящегося в тесной взаимосвязи со стволовыми и корковыми центрами головного мозга. Результаты литературного анализа позволяют по-новому взглянуть на их причинно-следственное взаимоотношение и место каждой системы в формировании общего вегетативного тонуса. Предложенный интегративный подход к изучению настоящей проблемы раскрывает ранее неизвестные автономные вегетативные свойства органов, формирующих эту физиологическую ось, что принципиально важно для понимания механизмов формирования и рецидивирования многих урологических заболеваний.

Литература


1. Lovrec P., Schuster D.M., Wagner R.H., Gabriel M., Savir-Baruch B. Characterizing and Mitigating Bladder Radioactivity on 18F-Fluciclovine PET/CT. J Nucl Med Technol. 2020;48(1):24–29. Doi: 10.2967/ jnmt.119.230581. Epub 2019 Oct 11. PMID: 31604898.


2. Berdichevskiy V.B., Berdichevskiy B.A, Sultanbaev R.A. Kidneu transplant urodinamics: Neuro physiologic consideration. Journal of Transplantology and Artificial Organs. 2014;16(1):85. //doi.org/10.15825/1995-1191-2014-1-85-88


3. Carrara M., Ferrario M., Bollen Pinto B. et al. The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Ann. Intensive Care. 2021;11:80. https://doi.org/10.1186/s13613- 021-00869-7


4. Liang B., Liang Y., Li R. et al. Effect of renal denervation on long-term outcomes in patients with resistant hypertension. Cardiovasc Diabetol. 2021;20:117 . https://doi.org/10.1186/s12933-021-01309-3


5. Li L., Xiong Y.L., Hu Z., Yao Y. Effect of Renal Denervation for the Management of Heart Rate in Patients With Hypertension: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022;8:810321. Doi: 10.3389/fcvm.2021.810321.


6. Ansari Usman S., Leecorresponding Benjamin J. Renal Denervation in Hypertension Methodist Debakey Cardiovasc J. 2021;17(1):73–74. Doi: 10.14797/TPCC5120.


7. Butani L., Berg G., Makker S.P. Microhematuria after renal transplantation in children. Pediatric Nephrology. 2002;17(12):1038–1041. https://doi. org/10.1007/s00467-002-1000-5


8. Shane A. Bobart, Mariam P. Alexander, Khaled Shawwa. The association of microhematuria with mesangial hypercellularity, endocapillary hypercellularity, crescent score and renal outcomes in immunoglobulin A nephropathy Nephrol Dial Transplant. 2021;36(5):840–847. Doi: 10.1093/ ndt/gfz267.


9. Peng He, Xiaoyong Y., Yang Zha. Microhematuria Enhances the Risks of Relapse and Renal Progression in Primary Membranous Nephropathy Front. Med., 09 December 2021 https://doi.org/10.3389/fmed.2021.704830


10. Ardalana M., Argania Н., Mortazavia M. More urine is better after renal transplantation Transplantation Proceedings. 2003;35(7):2612–2613 https://doi.org/10.1016/j.transproceed.2003.09.060Joel


11. Ranaweera Ruwan Arudchelvam Joel. Polyuria after Renal Transplantation: A Case Report and Review of Literature. June 2021Surgical Case Reports. Doi: 10.31487/j.SCR.2021.06.01.


12. Neranga Samarasinghe, Joel Arudchelvam, Ruwan Ranaweera, Mariathas Priatharshan. Polyuria after Renal Transplantation: A Case Report and Review of Literature. Surgical Case Reports. Doi: 10.31487/j. SCR.2021.06.01.


13. Buendia-Fuentes F. et al. Sympathetic reinnervation 1 year after heart transplantation, assessed using iodine-123 metaiodobenzylguanidine imaging. Transplant Proc. 2011;43:2247–2248. Doi: 10.1016/j. transproceed.2011.05.020.


14. Imamura T et al. Parasympathetic reinnervation accompaniedby improved post-exercise heart rate recovery and quality oflife in heart transplant recipients. Int Heart J. 2015;56:180–185. Doi: 10.1536/ihj.14-292.


15. Nicholas J. Montarello Tania Salehi Alex P. Bate Multimodality Tachycardia-Induced Stress Testing Predicts a Low-Risk Group for Early Cardiovascular Mortality After Renal Transplantation Open Access Published: October 22, 2020. Doi: https://doi.org/10.1016/j.ekir.2020.10.006.


16. Torres S. Hayden, Huesing Clara. Sympathetic innervation of the mouse kidney and liver arising from prevertebral ganglia. Burk, 25 AUG 2021. https://doi.org/10.1152/ajpregu.00079.2021


17. Christensen Anders., Nygaard Sissel, Rolid Katrine. Strong evidence for parasympathetic sinoatrial reinnervation after heart transplantation The Journal of Heart and Lung Transplantation Available online 15 November 2021 https://doi.org/10.1016/j.healun.2021.11.005.


18. Korsgren O., Jansson L., Andersson A., Sundler F. Reinnervation of transplanted pancreatic islets. A comparison among islets implanted into the kidney, spleen, and liver. Transplantation, 01 Jul 1993, 56(1):138–143. PMID: 7687393.


19. Hariharan S., Ajay K., Danovitch G. Long-Term Survival after Kidney Transplantation. N Engl J Med. 2021; 385:729–743 Doi: 10.1056/ NEJMra2014530/


20. Gillian Divard and Valentin Goutaudier Global Perspective on Kidney Transplantation: France. October 2021;2 (10):1637–1640; Doi: https://doi. org/10.34067/KID.0002402021


21. Raynaud M., Aubert O., Divard G. Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study. Open Access Published: October 27, 2021 DOI::https://doi.org/10.1016/S2589- 7500(21)00209-0


22. Sarier M., Yayar O., Yavuz A. Update on the Management of Urological Problems Following Kidney Transplantation. Urol Int. 2021;105:541–547. https://doi.org/10.1159/000512885


23. Li S.S. et al. A meta-analysis of renal outcomes in living kidney donors. Medicine (Baltimore). 2016;95:e3847.https://pubmed.ncbi.nlm.nih/ gov/27310964.


24. Matas A.J. et al. Causes and timing of end-stage renal disease after living kidney donation. Am. J Transplant. 2018;18:1140.https://pubmed.ncbi. nlm.nih.gov/29369517


25. Locke J.E. et al. Obesity increases the risk of end-stage renal disease among living kidney donors. Kidney Int. 2017;91:699. https://pubmed.ncbi.nlm. nih.gov/28041626


26. Allen P.J., Chadban S.J., Craig J.C., Lim WH., Allen R.D.M., Clayton P.A., et al. Recurrent glomerulonephritis after kidney transplantation: risk factors and allograft outcomes. Kidney Int. 2017;92(2):461–469. Doi: 10.1016/j. kint.2017.03.015.


27. Recurrent Crescentic Immunoglobulin A Nephropathy in the Graft Kidney Indian J Nephrol 2017; 27(5):335–336. Doi: 10.4103/0971-4065.175982.


28. Tang Z., Ji S.M., Chen D.R., Wen J.Q., Chen J.S., Liu Z.H., et al. Recurrent or de novo IgA nephropathy with crescent formation after renal transplantation. Ren Fail.2008;30:611–616. Doi: 10.1080/08860220802134516.


29. Deng R., Dai Y., Zhang H., Liu L., Li J., Xiong Y., et al. Higher Incidence of Renal Allograft Glomerulonephritis in Living Related Donor Kidney Transplantation. Transplant Proc. 2018;50(8):2421–2425. Doi:10. 1016/j. transproceed.2018.03.050.


30. Halimi, Jean-Michela,; Ortiz, Albertoc; Sarafidis Hypertension in kidney transplantation: a consensus statement of the ‘hypertension and the kidney’ working group of the European Society of Hypertension. Journal of Hypertension: 2021;39(8):1513–1521. Doi: 10.1097/ HJH.0000000000002879.


31. Lo[utradis C., Sarafidis P., Marinaki S. et al. Role of hypertension in kidney transplant recipients. J Hum Hypertens 35, 958–969 (2021). https://doi. org/10.1038/s41371-021-00540-5


32. Schwotzer Nora, Wuerzner Gregoire Hypertension after kidney transplantation September 2021. Revue Médicale Suisse. 2021;17(750):1571–1574.


33. Hansen J., Netter F. Netter's Atlas of Human Anatomy, 6th Edition, Philadelphia, Penn.: Sanders Elsevier. 2014;308-12, 316–318.


34. Johnl E.? Norvell James Е.? Anderson М. Assessment of possible parasympathetic innervation of the kidney Journal of the Autonomic Nervous System. 1983;8(3):291–294.


35. Zhang H., Reitz A., Kollias S., Summers P., Curt A, Schurch B. An fMRI study of the role of suprapontine brain structures in the voluntary voiding control induced by pelvic floor contraction. Neuroimage. 2005;24:174– 180. Doi: 10.1016/j.neuroimage.2004.08.027.


36. Edward J. Johns. Autonomic regulation of kidney function. Handb Clin Neurol. 2013;117:203–214. Doi: 10.1016/B978-0-444-53491-0.00017-1.


37. John W. Osborn, Roman Tyshynsky, Lucy Vulchanova. Function of Renal Nerves in Kidney Physiology and Pathophysiology Annu Rev Physiol. 2021;83:429–450. Doi: 10.1146/annurev-physiol-031620-091656.


38. Alexander М., Biering-Sorensen F., Wyndaele J-JInternational standards to document remaining autonomic function after spinal cord injury Spinal Cord. 2009;47:36–43. https://doi.org/10.1038/sc.2008.121


39. Tricia Adjei, Wilhelm von Rosenberg, Takashi Nakamura. The ClassA framework: HRV based assessment of SNS and PNS dynamics without LF-HF controversies. Frontiers in Physiology 10. Doi: 10.3389/ fphys.2019.00505.


40. Khan A.A., Lip G.Y.H., Shantsila A. Heart rate variability in atrial fibrillation: The balance between sympathetic and parasympathetic nervous system. Eur J Clin Invest. 2019;49(11):e13174. Doi: 10.1111/eci.13174.


41. Bhaskar A., Oommen V. A simple model for demonstrating the factors affecting glomerular filtration rate. Adv Physiol Educ. 2018;42(2):380–382. Doi: 10.1152/advan.00195.2017.


42. Komlosi P., Bell P.D., Zhang Z.R. Tubuloglomerular feedback mechanisms in nephron segments beyond the macula densa. Curr Opin Nephrol Hypertens. 2009;18(1):57–62. Doi: 10.1097/MNH.0b013e32831daf54


43. Critchley Н., Christopher J. Mathias, Oliver Josephs. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain. 2003;126(10):2139–2152. https://doi.org/10.1093/ brain/awg216


44. Wu W., Su Y., Huang H., Chen M., Fan F., Zhu D., Li K., Guo Z., Liang Z. and Huang H. Neuroimaging Study Investigating the Supraspinal Control of Lower Urinary Tract Function in Man With Orthotopic Ileal Neobladder. Front. Surg. 2021;8:751236. Doi: 10.3389/fsurg.2021.751236.


45. Griffiths D. Functional imaging of structures involved in neural control of the lower urinary tract. Handb Clin Neurol. 2015;130:121–133. Doi: 10.1016/B978-0-444-63247-0.00007-9


46. Fowler C.J., Griffiths D.J. A decade of functional brain imaging applied to bladder control. Neurourol Urodyn. 2010;29:49–55. Doi: 10.1002/ nau.20740.


47. Nofzinger Е., Buysse Daniel J., Miewald Jean M. Human regional cerebral glucose metabolism during non-rapid eye movement sleep in relation to waking Brain. 2002;125(Pt 5):1105–1115. Doi: 10.1093/brain/awf103.


48. Berdichevsky V.B., Berdichevsky B.A. Complementari study of brain mеttabolism by combined posinron emission and computer tomography. International Journal of Radiology and Radiation Therapy. 2018;5(1):30.


49. David M. Schuster, Cristina Nanni, Stefano Fanti. Anti-1-Amino-3-18F- Fluorocyclobutane-1-Carboxylic Acid: Physiologic Uptake Patterns, Incidental Findings, and Variants That May Simulate Disease J Nucl Med. 2014;55(12):1986–1992. Doi: 10.2967/jnumed.114.143628.


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: Б. А. Бердичевский – д.м.н., профессор, профессор кафедры онкологии с курсом урологии ВГБОУ ВО «ТюмГМУ» Минзрава РФ, Тюмень, Россия; e-mail:doctor_bba@mail.ru


Похожие статьи


Бионика Медиа