Прогнозирование результатов трансплантации почки с использованием искусственных нейронных сетей и изучение важных факторов риска


DOI: https://dx.doi.org/10.18565/urology.2023.4.82-89

Abolfazl Zanghaei, Zohreh Rostami, Ali Ameri, Mahmood Salesi, Ahmad Akhlaghi, Ahmad Shalbaf, Hassan Doosti

1) Кафедра биомедицинской инженерии и биофизики, Медицинский факультет, Университет медицинских наук им. Шахида Бехешти, Тегеран, Иран; 2) Исследовательский центр нефрологии, Медицинский факультет, Университет медицинских наук Бакияталлы, Тегеран, Иран; 3) Исследовательский центр химических травм, Институт Биологических систем и отравлений, Университет медицинских наук Бакияталлы, Тегеран, Иран; 4) Отдел управления медицинской информацией, Школа управления здравоохранением и информационных наук, Иранский университет медицинских наук, Тегеран, Иран; 5) Школа математических и физических наук Университета Маккуори, Сидней, Австралия
Введение. Пересадка почки является методом выбора для ряда пациентов с терминальной стадией хронической почечной недостаточности, но в ряде случаев развивается острая или хроническая реакция отторжения трансплантата. В этой связи очень важно прогнозировать результаты трансплантации.
Материалы и методы. В базу данных включены данные историй болезни 4572 пациентов после трансплантации почки. Мы использовали искусственные нейронные сети для прогнозирования результатов трансплантации. Кроме того, изучались новые характеристики, которые позволили улучшить точность прогнозирования.
Результаты. Согласно результатам, нейронные сети с хорошей конфигурацией позволяют прогнозировать результаты трансплантации почки с чувствительностью и специфичностью выше 86%. Креатинин является наиболее важным фактором риска, который влияет на результаты трансплантации.
Заключение. Разработанные нейронные сети позволяют правильно прогнозировать результаты трансплантации с точностью 86%. Уровень креатинина реципиента является наиболее важным прогностическим фактором почечной функции.

Литература


1. Loupy A., et al. Prediction system for risk of allograft loss in patients receiving kidney transplants: international derivation and validation study. BMJ. 2019;366:l4923.


2. Yoo K.D.e.a. Superior outcomes of kidney transplantation compared with dialysis: An optimal matched analysis of a national population-based cohort study between 2005 and 2008 in Korea. Medicine (Baltimore). 2016;95: e4352.


3. Mahdavi-Mazdeh M. The Iranian model of living renal transplantation. Kidney Int. 2012;82(6):627-34.


4. Naqvi S.A.A. et al. Predicting Kidney Graft Survival Using Machine Learning Methods: Prediction Model Development and Feature Significance Analysis Study. J Med Internet Res. 2021;23(8):e26843.


5. Ashby V.B., et al. A kidney graft survival calculator that accounts for mismatches in age, sex, HLA, and body size. Clinical Journal of the American Society of Nephrology. 2017;12(7):1148-1160.


6. Dayoub J.C., et al. The effects of donor age on organ transplants: A review and implications for aging research. Experimental gerontology. 2018;110: 230-240.


7. Naderi G., et al., Impact of the donor-recipient gender matching on the graft survival from live donors. BMC Nephrology. 2020;21(1):5.


8. Xin Z., et al. Analysis of Factors Influencing Kidney Function of Recipients After Renal Transplantation in Southwestern China: A Retrospective Study. Frontiers in Medicine, 2020;7.


9. Udomkarnjananun S., et al., The First Asian Kidney Transplantation Prediction Models for Long-term Patient and Allograft Survival. Transplantation. 2020;104(5).


10. Tan Q., et al., Factors affecting willingness to receive a kidney transplant among hemodialysis patients in West China: A cross-sectional survey. Medicine. 2017;96(18).


11. Takemoto SK, Gjertson DW, et al, Twelve years’ experience with national sharing of HLA-matched cadaveric kidneys for transplantation. NEngl J Med 2000;343:1078-84.


12. Stamenic D., et al., A Prognostic Tool for Individualized Prediction of Graft Failure Risk within Ten Years after Kidney Transplantation. Journal of Transplantation. 2019;2019:1-10.


13. Lenihan C.R., J.B. Lockridge, and J.C. Tan, A New Clinical Prediction Tool for 5-Year Kidney Transplant Outcome. American Journal of Kidney Diseases. 2014;63(4):549-551.


14. Thaunat O., et al. To Biopsy or Not to Biopsy? Should We Screen the Histology of Stable Renal Grafts? Transplantation. 2007;84(6):671-676.


15. Gonzales M.M., et al. Predicting individual renal allograft outcomes using risk models with 1-year surveillance biopsy and alloantibody data. Journal of the American Society of Nephrology. 2016;27(10):3165-3174.


16. Isoniemi H., Taskinen E., Häyry P. Histological chronic allograft damage index accurately predicts chronic renal allograft rejection. Transplantation. 1994;58(11):1195-1198.


17. Yi Z., et al. Deep learning identified pathological abnormalities predictive of graft loss in kidney transplant biopsies. Kidney International. 2022;101(2): 288-298.


18. Humar A, Gillingham K, Payne WD, Sutherland DE, Matas AJ. Living unrelated donors in kidney transplants: better long-term results than with non-HLA-identical living related donors? Transplantation. 2000;69(2): 1942-1945.


19. Lasserre J., et al., Predicting the outcome of renal transplantation. Journal of the American Medical Informatics Association. 2011;19(2):255-262.


20. Pottel H., et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrology Dialysis Transplantation. 2016;31(5):798-806.


21. Salvadori M, Bock A, et al. and 202-206, Estimated one-year glomerular filtration rate is the best predictor of long-term graft function following renal transplant. Transplantation. 2006;81(2).


22. Cabello Benavente R., et al., The candidate for renal transplantation work up: medical, urological and oncological evaluation. Arch Esp Urol. 2011;64(5):441-60.


23. Amer H, L.J., Rule AD, et al. Urine high and low molecular weight proteins one-year post-kidney transplant: relationship to histology and graft survival. Am J Transplant. 2013;13(3):676-684.


24. Meier-Kriesche H.-U., et al. Effect of waiting time on renal transplant outcome. Kidney international. 2000;58(3):1311-1317.


25. Pauly R.P. Survival comparison between intensive hemodialysis and transplantation in the context of the existing literature surrounding nocturnal and short-daily hemodialysis. Nephrol. Dial Transplant. 2013;28:44-47.


26. Woodside K.J., et al. Arteriovenous Fistula Maturation in Prevalent Hemodialysis Patients in the United States: A National Study. American Journal of Kidney Diseases, 2018.


27. Kramer A., et al. The effect of timing of the first kidney transplantation on survival in children initiating renal replacement therapy. Nephrology Dialysis Transplantation. 2011;27(3):1256-1264.


28. Meier-Kriesche H.-U., Kaplan B. Waiting time on dialysis as the strongest modifiable risk factor for renal transplant outcomes: A Paired Donor Kidney Analysis: 1. Transplantation. 2002;74(10).


29. Hariharan S. Long-term kidney transplant survival. American Journal of Kidney Diseases. 2001;38(6):S44-S50.


30. Hariharan S.M.M., Cherikh WS, Tolleris CB,Bresnahan BA, Johnson CP, Post-transplant renal function in the first year predicts long-term kidney transplant survival. Kidney Int. 2002;62(1):311-318.


31. Kim S.I., et al. Experience with cyclosporine in adult living donor kidney transplantation: from 1984 to 2002 at Yonsei University. Transplant Proc. 2004;36(2 Suppl):186s-192s.


32. Ng M.S.Y., et al. ABO blood group relationships to kidney transplant recipient and graft outcomes. PloS one. 2020;15(7): e0236396-e0236396.


33. Zhou Y., et al. The Potential Significance of ABO Genotyping for Donor Selection in Kidney Transplantation. Frontiers in immunology. 2020;11:608716-608716.


34. Ghods A.J. Renal transplantation in Iran. Nephrol Dial Transplant. 2002;17(2):222-8.


35. Rashid H.U., et al. Experience with living donor kidney transplantation in Bangladesh. Transplant Proc. 1999;31(8):3112.


36. Kayedi M. et al. Renal transplantation in Iran: a single-center study. Transplant Proc. 2001;33(5):2646-7.


37. Khosroshahi H.T., et al. Three hundred one cases of renal transplantation from Tabriz, Iran. Transplant Proc. 2003;35(7):2594-5.


38. Einollahi B., et al. Patient and graft outcome after living donor renal transplantation in Iran: more than 15-year follow-up. Transplant Proc, 2003;35(7):2605-6.


39. Domagala P., et al. Successful transplantation of kidneys from deceased donors with terminal acute kidney injury. Ren Fail. 2019;41(1):167-174.


40. Kaplan B.S.J., Meier-Kriesche HU. Poor predictive value of serum creatinine for renal allograft loss. . Am J Transplant. 2003;3(12):1560-1565.


41. Foucher Y.D.P., Akl A., et al. A clinical scoring system highly predictive of long-term kidney graft survival. Kidney Int. 2010;78(12): 1288-1294.


42. Shabir S.H.J., Cherukuri A., et al Predicting 5-year risk of kidney transplant failure: a prediction instrument using data available at 1 year posttransplantation. Am J Kidney Dis. 2014;63(4):643-651.


43. Kasiske B.L., et al. A Simple Tool to Predict Outcomes After Kidney Transplant. American Journal of Kidney Diseases. 2010;56(5):947-960.


44. Wey A., et al. A kidney offer acceptance decision tool to inform the decision to accept an offer or wait for a better kidney. American Journal of Transplantation. 2018;18(4):897-906.


45. Nursetyo A.A., et al. Graft Rejection Prediction Following Kidney Transplantation Using Machine Learning Techniques: A Systematic Review and Meta-Analysis. Stud Health Technol Inform. 2019;264:10-14.


46. Senanayake S., et al. Using machine learning techniques to develop risk prediction models to predict graft failure following kidney transplantation: protocol for a retrospective cohort study. F1000Res, 2019;8:1810.


47. Santori G.F.I., Valente U. Application of an artificial neural network model to predict delayed decrease of serum creatinine in pediatric patients after kidney transplantation. Transplant Proc. 2007;39:1813-9.


48. Michael E Brier, Prasun C Ray, Jon B Klein. Prediction of delayed renal allograft function using an artificial neural network’. Nephrol Dial Transplant 2003;18:2655-9.


49. Krikov S.e.a. Predicting kidney transplant survival using tree-based modeling. ASAIO. J. 2007;53:592-600.


50. Greco R., et al. Decisional trees in renal transplant follow-up. in Transplantation proceedings. 2010. Elsevier.


51. Petrovsky N., et al. Use of artificial neural networks in improving renal transplantation outcomes. GRAFT-GEORGETOWN. 2002;5:6-13.


52. Purnell T.S.e.a. Comparison of life participation activities among adults treated by hemodialysis, peritoneal dialysis, and kidney transplantation: a systematic review. Am. J. Kidney Dis. 2013;62:953-973.


53. Lamb KE, et al. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant. 2011;11(3):450-462.


54. Burke J.F., Jr. et al. Long-term efficacy and safety of cyclosporine in renal-transplant recipients. N Engl J Med. 1994;331(6):358-63.


55. Lloveras J. Use of cyclosporine in renal transplantation. Transplant Proc, 2004;36(2 Suppl):107s-113s.


56. Hariharan S., McBride M.A., Cohen E.P. Evolution of Endpoints for Renal Transplant Outcome. American Journal of Transplantation. 2003;3(8):933-941.


57. Skaik Y.A., Understanding and using sensitivity, specificity and predictive values. Indian J Ophthalmol. 2008;56(4):341.


58. Trevethan R., Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice. Frontiers in Public Health, 2017. 5.


59. Dokeroglu T., Deniz A., Kiziloz H.E. A Comprehensive Survey on Recent Metaheuristics for Feature Selection. Neurocomputing, 2022.


60. Foroushani A.R., et al. Risk Factors of Graft Survival After Diagnosis of Post-kidney Transplant Malignancy: Using Cox Proportional Hazard Model. Iranian Red Crescent Medical Journal. 2015;17(11).


61. Salesi M., et al. Chronic graft loss and death in patients with post-transplant malignancy in living kidney transplantation: a competing risk analysis. Nephro-urology monthly. 2014;6(2).


62. Miller G., et al. Kidney Transplantation Outcome Predictions (KTOP): A Risk Prediction Tool for Kidney Transplants from Brain-dead Deceased Donors Based on a Large European Cohort. European Urology, 2022.


63. Robnik-Šikonja M., Kononenko I. Theoretical and Empirical Analysis of ReliefF and RReliefF. Machine Learning. 2003;53(1):23-69.


64. Kononenko I., Šimec E., Robnik-Šikonja M. Overcoming the myopia of inductive learning algorithms with RELIEFF. Applied Intelligence, 1997;7(1): 39-55.


65. Mwangi B., Tian T.S., Soares J.C. A review of feature reduction techniques in neuroimaging. Neuroinformatics. 2014;12(2):229-244.


66. Tabakhi S., Moradi P., Akhlaghian F. An unsupervised feature selection algorithm based on ant colony optimization. Engineering Applications of Artificial Intelligence. 2014;32:112-123.


67. Yang W., Wang K., Zuo W. Neighborhood component feature selection for high-dimensional data. J. Comput. 2012;7(1):161-168.


68. Lafranca J.A. et al. Body mass index and outcome in renal transplant recipients: a systematic review and meta-analysis. BMC medicine. 2015;13:111-111.


69. Rezaei M., Veismoradi M., Safari R. Comparison of Kidney Transplant Results in Kermanshah and Iran: A Systematic Review and Meta-Analysis Study. Journal of Research in Urology. 2019;3(2):57-67.


70. Levey A.S., et al. A new equation to estimate glomerular filtration rate. Annals of internal medicine. 2009;150(9): 604-612.


71. Schwartz G.J., et al. New Equations to Estimate GFR in Children with CKD. Journal of the American Society of Nephrology. 2009;20(3):629-637.


72. Schwartz G.J. Work D.F. Measurement and Estimation of GFR in Children and Adolescents. Clinical Journal of the American Society of Nephrology. 2009;4(11):1832-1843.


Об авторах / Для корреспонденции


Автор для связи: Ali Ameri – кафедра биомедицинской инженерии и биофизики, Медицинский факультет, Университет медицинских наук им. Шахида Бехешти, Тегеран, Иран. Email: aliameri86@gmail.com


Похожие статьи


Бионика Медиа