Современные оптические неинвазивные технологии в диагностике урологических заболеваний. Обзор литературы. Часть I


DOI: https://dx.doi.org/10.18565/urology.2024.5.109-115

Попов С.В., Гусейнов Р.Г., Потапова Е.В., Сивак К.В., Дрёмин В.В., Перепелица В.В., Лелявина Т.А., Дунаев А.В.

1) СПб ГБУЗ «Клиническая больница Святителя Луки», Санкт-Петербург, Россия; 2) ЧОУВО «Санкт-Петербургский медико-социальный институт», Санкт-Петербург, Россия; 3) ФГБОУ ВО «Санкт-Петербургский государственный университет», Санкт-Петербург, Россия; 4) ФГБОУ ВО «Орловский государственный университет им. И. С. Тургенева», Орел, Россия; 5) ФГБУ «Научно-исследовательский институт гриппа им. А. А. Смородинцева», Санкт-Петербург, Россия; 6) ФГБУ «НМИЦ им. В. А. Алмазова» Минздрава России, Санкт-Петербург, Россия
Эффекты взаимодействия оптического излучения и биологических тканей лежат в основе различных технологий оптической диагностики – лазерной допплеровской флоуметрии, спектроскопии диффузного отражения, флуоресцентной спектроскопии, фотодинамической диагностики (флуоресцентной цистоскопии), конфокальной микроскопии, оптической когерентной томографии и др. Результативность применения данных технологий является предметом изучения в разных областях медицины – дерматологии и офтальмологии, анестезиологии и кардиохирургии, при диагностике злокачественных новообразований и др.
В первой части нашего обзора были рассмотрены и систематизированы имеющиеся данные о целесообразности использования в качестве диагностического инструмента лазерной допплеровской флоуметрии и спектроскопии диффузного отражения в урологической практике.

Литература


1. Glybochko P.V., Mukhin N.A., Svistunov A.A., Flmin V.V. Improving diagnostics is a prerequisite for improving the quality of medical care. Terapevticheskii arkhiv. 2015;4:4-7. doi: 10.17116/terarkh20158744-7.


2. Grinko S.S., Denisenko A.I., Novikova A.A. Modern technologies of optoelectronic diagnostics in medicine. Vostochno-yevropeyskiy zhurnal peredovykh tekhnologiy. 2010;5/2(47):17–20.


3. Golenishchev-Kutuzov V.A., Golenishchev-Kutuzov A.V., Nesmelova I.M. Promising materials and radiation receivers of photoelectronics and photoenergetics: monograph. Kazan': Kazan. gos. energ. un-t, 2013. – 171 p. ISBN 978-5-89873-396-4.


4. Jacques S.L. Optical properties of biological tissues: a review. Phys. Med. Biol. 2013;58(11):R37–61. doi: 10.1088/0031-9155/58/11/R37.


5. Kuball H.G., Höfer T., Kiesewalter S. Chiroptical Spectroscopy, General Theory. Encyclopedia of Spectroscopy and Spectrometry Ed. 3. 2017. P.217–231.


6. Giraev K.M., Ashurbekov N.A., Murtazayeva A.A., Abdurakhmanov G.M. Investigation of the dynamics of morpho-functional and biochemical parameters of precancerous biological tissues by methods of stationary fluorescence and diffuse-reflective spectroscopy. Vestnik Dagestanskogo gosudarstvennogo universiteta. 2011;6:16–26.


7. Sasin M.E., Gorbunova I.A., Bezverkhny N.O., Beltyukov Ya.M., Rubayo-Soneira J., Vasyutinsky O.S. Polarized fluorescence of NADH molecules with two-photon excitation by femtosecond laser pulses with a wavelength of 720-780 nm. Zhurnal tekhnicheskoy fiziki. 2019;45(13):37. DOI:10.21883/PJTF.2019.13.47956.17803.


8. Shirshin E.A., Yakimov B.P., Darwin M.E., Omelianenko N., Rodionov S.A., Gurfinkel Yu.I., Lademann Yu., Fadeev V.V., Priezdev A.V. Multiphoton microscopy with endogenous contrast: the basis of fluorophores and possibilities in the study of biochemical processes. Uspekhi biologicheskoy khimii. 2019;59:139–180.


9. Giovannacci I., Magnoni C., Vescovi P., Painelli A., Tarentini E., Meleti M. Which are the main fluorophores in skin and oral mucosa? A review with emphasis on clinical applications of tissue autofluorescence. Arch. Oral. Biol. 2019;105:89–98. doi: 10.1016/j.archoralbio.2019.07.001.


10. Zherebtsov E.A., Dremin V.V., Zherebtsova A.I. and others. Fluorescent diagnostics of mitochondrial function in epithelial tissues in vivo: monograph. Orel: OGU imeni I.S. Turgeneva, 2018. 107 p.


11. Rogatkin D.A., Bychenkov O.A., Polyakov P.Yu. Noninvasive medical spectrophotometry in modern radiology: issues of accuracy and informativeness of measurement results. Al'manakh klinicheskoy meditsiny. 2008;XVII(1):83–87.


12. Tuchin V.V. Optical biomedical diagnostics. V 2 t. T. 1: uchebnoye posobiye. M.: Ay Pi Ar Media, 2021. 549 p. ISBN 978-5-4497-0570-9 (т. 1), 978-5-4497-0592-1).


13. Dunaev A.V. Multimodal optical diagnostics of microcirculatory and tissue systems of the human body: monograph. Staryy Oskol: TNT, 2022. 440 p.


14. Laser Doppler flowmetry of blood microcirculation. Guidelines for doctors / pod red. A.I. Krupatkina, V.V. Sidorova. Moskva: OAO «Izdatel'stvo «Meditsina», 2005. 125 p.


15. Kazikhinurov A.A., Kazikhinurov R.A., Safiullin R.I., Zagidullin A.A., Ishemgulov R.R., Mustafin A.T., Nasibullin I.M. Disorders and methods of correction of microcirculation in lower urinary tract diseases. Meditsinskiy vestnik Bashkortostana. 2005;5:94–98.


16. Kologrivov V.N. The Doppler effect in classical physics. M.: MFTI, 2012.


17. Barkhatov I.V. Evaluation of the blood microcirculation system using laser Doppler flowmetry. Klinicheskaya meditsina. 2013;11:21–27.


18. Dunaev A.V. et al. Fundamentals of medical biophotonics: a textbook. Orel: OGU imeni I.S. Turgeneva, 2022. 195 p.


19. Beisland H.O., Kvernebo K. The microcirculation in neodymium-YAG laser irradiated and in electrocoagulated urinary bladder tumors evaluated with laser Doppler flowmetry. Urol. Res. 1986;14(3):149–152. DOI: 10.1007/BF00255835.


20. Albert M., Losser M.R., Hayon D., Faivre V., Payen D. Systemic and renal macro- and microcirculatory responses to arginine vasopressin in endotoxic rabbits. Crit. Care Med. 2004;32(9):1891–1898. DOI: 10.1097/01.ccm.0000139708.10718.e3.


21. Walkowska А., Kompanowska-Jezierska E., Sadowski J. Nitric oxide and renal nerves: comparison of effects on renal circulation and sodium excretion in anesthetized rats. Kidney Int. 2004;66(2):705–12.


22. Kazikhinurov A.A., Galimzyanov V.Z., Zagitov A.R., Zagidullin A.A., Mustafin A.T., Maganev K.V., Boyarko A.V., Akchulpanov N.F., Gabdrakhimov T.R., Krasnikov M.V. Experimental rationale of the use of laser Doppler flowmetry as a diagnostic criterion for microcirculation disorders in modeling diseases of the lower urinary tract. Kreativnaya khirurgiya i onkologiya. 2011;1:58–61.


23. Neymark A.I., Yakovlev A.B., Kondratieva Yu.S., Taranina T.S. Use of laser Doppler flowmetry to assess microcirculation in urethral polyps in women. Meditsina i obrazovaniye v Sibiri. 2013;5:47–49.


24. Yakovlev A.B., Neymark A.I., Kondratieva Yu.S., Taranina T.S. The role of microcirculatory disorders in the differential diagnosis of urethral polyps associated with ureaplasma infection and polyps of non-infectious etiology. Materialy XIII Kongressa Rossiyskogo obshchestva urologov. M., 2013. p. 468.


25. Pavlov V.N., Zagitov A.R., Kazikhinurov A.A., Ishemgulov R.R., Mustafin A.T., Abzalilov R.A., Boyarko A.V., Ishmurzin R.R., Mukhamedianov F.N., Usmanova N.V., Nasibullin I.M. The role of laser Doppler flowmetry in assessing the efficiency of rehabilitation of patients with pelvic organs diseases. Meditsinskiy vestnik Bashkortostana. 2013;8(2):121–125.


26. Shulgin A.S., Mironov V.N. Laser Doppler flowmetry in the diagnosis and control of the efficiency of treatment of chronic cystitis in women. Ural'skiy meditsinskiy zhurnal. 2009;8(62):54–57.


27. Vinnik Yu.Yu., Prokhorenkov V.I., Nikolaev V.G. Monitoring the efficiency of treatment of chronic prostatitis using laser Doppler flowmetry. Sibirskoye meditsinskoye obozreniye. 2009;5:58–61.


28. Neymark A.I., Maksimova S.S. The effect of complex therapy of patients with chronic abacterial prostatitis on hemodynamics of the prostate. Eksperimental'naya i klinicheskaya urologiia. 2019;3:144–150.


29. Kruglov V.A., Miroshnikov V.M. The role of microcirculation in the diagnosis of acute pyelonephritis based on laser Doppler flowmetry. Fundamental'nyye issledovaniya. Meditsinskiye nauki. 2004;1:16–20.


30. Kruglov V.A. The state of microcirculation in patients with inflammatory diseases of the genitourinary system. Fundamental'nyye issledovaniya. 2005;5:61-64. URL: https://fundamental-research.ru/ru/article/view?id=6069 (date of access: 10/21/2023).


31. Kruglov V.A. The role of laser Doppler flowmetry in the diagnosis, treatment and prevention of acute inflammatory diseases of the genitourinary system: diss. … kand. med. nauk: 14.00.40. M., 2006. 173 p.


32. Neymark A.I., Yakovleva A.Yu., Lapiy G.A. The use of of laser Doppler flowmetry in the assessment of microcirculation in the vaginal wall in the treatment of stress urinary incontinence. Lazernaya meditsina. 2017;21(1):27–29.


33. Plotnikova L.V., Nechiporenko A.P., Garifullin A.D., Kuvshinov A.Yu., Voloshin S.V. Electron diffuse reflectance spectroscopy in the study of serum in patients with multiple myeloma. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki. 2020;20(2):185–192. DOI: 10.17586/2226-1494-2020-20-2-185-192.


34. Chen W., Wang X., Wang B., Wang Y., Zhang Y., Zhao H., Gao F. Lock-in-photon-counting-based highly-sensitive and large-dynamic 164 imaging system for continuous-wave diffuse optical tomography. Biomed. Opt. Express. 2016;7(2):499–511. https://doi.org/10.1364/boe.7.000499.


35. Konovalov A., Genina E., Bashkatov A. Diffuse optical mammotomography: state-of-the-art and prospects. Journal of Biomedical Photonics & Engineering. 2016;2(2):020202-1. https://doi.org/10.18287/jbpe16.02.020202.


36. Pham T., Hornung R., Ha H., Burney T., Serna D., Powell L., Brenner M., Tromberg B. Noninvasive monitoring of hemodynamic stress using quantitative near-infrared frequency-domain photon migration spectroscopy. J. Biomed. Opt. 2002;7(1):34–44. https://doi.org/10.1117/1.1427046.


37. Liu Y., Su J., Lin Z.-J., Teng S., Rhoden A., Pantong N., Liu H. Reconstructions for continuous-wave diffuse optical tomography by a globally convergent method. Journal of Applied Mathematics and Physics. 2014;2(5):204–213. https://doi.org/10.4236/jamp.2014.25025.


38. Yamada Y., Okawa S. Diffuse optical tomography: present status and its future. Optical Review. 2014;21(3):185–205. https://doi.org/10.1007/s10043-014-0028-7.


39. Ban H.Y., Schweiger M., Kavuri V.C., Cochran J.M., Xie L., Busch D.R., Katrašnik J., Pathak S., Chung S.H., Lee K., Choe R., Czerniecki B.J., Arridge S.R., Yodh A.G. Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry. Med. Phys. 2016;43(7):4383–4485. https://doi.org/10.1118/1.4953830.


40. Beschastnov V.V., Ryabkov М.G., Pavlenko I.V., Bagryantsev М.V., Dezortsev I.L., Kichin V.V., Baleyev М.S., Maslennikova А.V., Orlova А.G., Kleshnin М.S., Turchin I.V. Current methods for the assessment of oxygen status and biotissue microcirculation condition: diffuse optical spectroscopy (review). Sovremennye tehnologii v medicine. 2018;10(4):183–194. https://doi.org/10.17691/stm2018.10.4.22.


41. Zhu Q., Huang M., Chen N., Zarfos K., Jagjivan B., Kane M., Hedge P., Kurtzman S.H. Ultrasound-guided optical tomographic imaging of malignant and benign breast lesions: initial clinical results of 19 cases. Neoplasia. 2003;5(5):379–388. https://doi.org/10.1016/s1476-5586(03)80040-4.


42. Cerussi A., Shah N., Hsiang D., Durkin A., Butler J., Tromberg B.J. In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy. J. Biomed. Opt. 2006;11(4):044005. https://doi.org/10.1117/1.2337546.


43. Dremin V., Potapova E., Zherebtsov E., Kandurova K., Shupletsov V., Alekseyev A., Mamoshin A., Dunaev A. Optical percutaneous needle biopsy of the liver: a pilot animal and clinical study. Sci. Rep. 2020;10(1):14200. doi: 10.1038/s41598-020-71089-5.


44. Payette J.R., Kohlenberg E., Leonardi L., Pabbies A., Kerr P., Liu K.Z., Sowa M.G. Assessment of skin flaps using optically based methods for measuring blood flow and oxygenation. Plast. Reconstr. Surg. 2005;115(2):539–546. https://doi.org/10.1097/01.prs.0000148415.54546.ca.


45. Colwell A.S., Wright L., Karanas Y. Near-infrared spectroscopy measures tissue oxygenation in free flaps for breast reconstruction. Plast. Reconstr. Surg. 2008;121(5):344e–345e. https://doi.org/10.1097/prs.0b013e31816b11e5.


46. Repež A., Oroszy D., Arnez Z.M. Continuous postoperative monitoring of cutaneous free flaps using near infrared spectroscopy. J. Plast. Reconstr. Aesthet. Surg. 2008;61(1):71–77. https://doi.org/10.1016/j.bjps.2007.04.003.


47. Colwell A.S., Craft R.O. Near-infrared spectroscopy in autologous breast reconstruction. Clin. Plast. Surg. 2011;38(2):301–307. https://doi.org/10.1016/j.cps.2011.03.014.


48. Lin S., Nguyen M., Chen C., Colakoglu S., Curtis M., Tobias A.M., Lee B.T. Tissue oximetry monitoring in microsurgical breast reconstruction to decrease flap loss. Plast. Reconstr. Surg. 2011;127(3):1080–1085. https://doi.org/10.1097/prs.0b013e31820436cb.


49. Whitaker I.S., Pratt G.F., Rozen W.M., Cairns S.A., Barrett M.D., Hiew L.Y., Cooper M.A., Leaper D.J. Near infrared spectroscopy for monitoring flap viability following breast reconstruction. J. Reconstr. Microsurg. 2012;28(3):149–154. https://doi.org/10.1055/s-0031-1296030.


50. Bentz B.Z., Wu T.C., Gaind V., Webb K.J. Diffuse optical localization of blood vessels and 3D printing for guiding oral surgery. Appl. Opt. 2017;56(23):6649–6654. https://doi.org/10.1364/ao.56.006649.


51. Maslennikova A.V., Orlova A.G., Golubiatnikov G.Y., Kamensky V.A., Shakhova N.M., Babaev A.A., Snopova L.B., Ivanova I.P., Plekhanov V.I., Prianikova T.I., Turchin I.V. Comparative study of tumor hypoxia by diffuse optical spectroscopy and immunohistochemistry in two tumor models. J. Biophotonics. 2010;3(12):743–751. https://doi.org/10.1002/jbio.201000060.


52. Orlova A.G., Maslennikova A.V., Golubyatnikov G.Y., Kamensky V.A., Shakhova N.M., Plekhanov V.I., Turchin I.V., Snopova L.B., Ivanova I.P., Babaev A.A., Pryanikova T.I. Noninvasive estimation of the oxygen status of experimental tumors by diffuse optical spectroscopy. Biophysics. 2011;56(2):304–308. https://doi.org/10.1134/s0006350911020230.


53. Orlova A.G., Kirillin M.Yu., Volovetsky A.В., Shilyagina N.Yu., Sergeeva E.A., Golubiatnikov G.Yu., Turchin I.V. Diffuse optical spectroscopy monitoring of oxygen state and hemoglobin concentration during SKBR-3 tumor model growth. Laser Physics Letters. 2016;14(1):015601. https://doi.org/10.1088/1612-202x/aa4fc1.


54. Papazoglou E.S., Weingarten M.S., Zubkov L., Zhu L., Tyagi S., Pourezaei K. Near infrared diffuse optical tomography: improving the quality of care in chronic wounds of patients with diabetes. Biomed. Instrum. Technol. 2007;41(1):83–87. https://doi.org/10.2345/0899-8205(2007)41


55. Khalil M.A., Kim H.K., Kim I.K., Flexman M., Dayal R., Shrikhande G., Hielscher A.H. Dynamic diffuse optical tomography imaging of peripheral arterial disease. Biomed. Opt. Express. 2012;3(9):2288–2298. https://doi.org/10.1364/boe.3.002288.


56. Sujatha N., Anand B.S.S., Nivetha K.B., Narayanamurthy V.B., Seshadri V., Poddar R. Assessment of microcirculatory hemoglobin levels in normal and diabetic subjects using diffuse reflectance spectroscopy in the visible region – a pilot study. Journal of Applied Spectroscopy. 2015;82(3):432–437. https://doi.org/10.1007/s10812-015-0125-9.


57. Dremin V., Zherebtsov E., Sidorov V., Krupatkin A., Makovik I., Zherebtsova A., Zharkikh E., Potapova E., Dunaev A., Doronin A., Bykov A., Rafailov I., Litvinova K., Sokolovski S., Rafailov E. Multimodal optical measurement for study of lower limb tissue viability in patients with diabetes mellitus. J. of Biomedical Optics. 2017;22(8):1–10. doi: 10.1117/1.JBO.22.8.085003.


58. Potapova E.V., Dremin V.V., Zherebtsov E.A., Makovik I.N., Zharkikh E.V., Dunaev A.V., Pilipenko O.V., Sidorov V.V., Krupatkin A.I. A Complex Approach to Noninvasive Estimation of Microcirculatory Tissue Impairments in Feet of Patients with Diabetes Mellitus using Spectroscopy. Optics and Spectroscopy. 2017;123(6):955–964.


59. Potapova E.V., Dremin V.V., Zherebtsov E.A., Makovik I.N., Zherebtsova A.I., Dunaev A.V., Podmasteryev K.V., Sidorov V.V., Krupatkin A.I., Khakhicheva L.S., Muradyan V.F. Evaluation of Microcirculatory Disturbances in Patients with Rheumatic Diseases by the Method of Diffuse Reflectance Spectroscopy. Human Physiology. 2017;43(2):222–228.


60. Mourant J.R., Bigio I.J., Boyer J., Conn R.L., Johnson T., Shimada T. Spectroscopic diagnosis of bladder cancer with elastic light scattering. Lasers Surg. Med. 1995;17(4):350–357. doi: 10.1002/lsm.1900170403.


61. Koenig F., Larne R., Enquist H., McGovern F.J., Schomacker K.T., Kollias N., Deutsch T.F. Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma. Urology. 1998;51(2):342–345. doi: 10.1016/s0090-4295(97)00612-2.


62. Brunckhorst O., Ong Q. J., Mayer E. Novel real-time optical imaging modalities for the detection of neoplastic lesions in urology: a systematic review. Surgical Endoscopy. 2019;33(5):1349–1367. DOI:10.1007/s00464-018-6578-1.


63. Goel U.O., Maddox M.M., Elfer K.N., Dorsey P.J., Wang M., McCaslin I.R., Brown J.Q., Lee B.R. Feasibility of quantitative diffuse reflectance spectroscopy for targeted measurement of renal ischemia during laparoscopic partial nephrectomy. J. Biomed. Opt. 2014;19(10):107001. doi: 10.1117/1.JBO.19.10.107001.


64. Engelhardt B., Gillam-Krakauer M. Use of near-infrared spectroscopy in the management of patients in neonatal intensive care units – an example of implementation of a new technology In: Th. Theophanides (ed.). Infrared Spectroscopy – Life and Biomedical Sciences, 2012. P. 5-24. ISBN: 978-953-51-0538-1. doi: 10.5772/37994.


65. Stothers L., Macnab A.J. Near-infrared spectroscopy (NIRS) changes in oxy and deoxyhemoglobin during natural bladder filling and voiding in normal volunteers. J. Urol. 2007;177:506.


66. Macnab A.J., Shadgan B., Stothers L. The evolution of wireless near infrared spectroscopy applications in urology and rationale for clinical use. J. Near Infrared Spec. 2012;20(1):57–73. https://doi.org/10.1255/jnirs.963.


67. Macnab A.J., Stothers L. Near infrared spectroscopy (NIRS): Validation of bladder-outlet obstruction assessment using non-invasive parameters. Can. J. Urol. 2008;15(2):4241–4248.


68. Guevara R., Stothers L., Macnab A.J. Mathematical modeling methodology for generation of a diagnostic algorithm using near-infrared data. Spectroscopy. 2011;25(1):1–11.


69. Farag F., Martens F., D’Hauwers K., Feitz W., Heesakkers J.P. Near infrared spectroscopy: a novel non-invasive diagnostic method for detrusor overactivity in patients with overactive bladder symptoms a preliminary and experimental study. Eur. Urol. Suppl. 2011;10(2):289–290.


70. Haylen B.T., de Ridder D., Freeman R.M., et al. An international urogynecological association (IUGA)/international continence society (ICS) joint report on the terminology for female pelvic floor dysfunction. Neurourol. Urodyn. 2010;29(1):4–20. https://doi.org/10.1002/nau.20798.


71. Farag F., Martens F., D’Hauwers K., Feitz W., Heesakkers J.P. Near infrared spectroscopy: a novel non-invasive diagnostic method for detrusor overactivity in patients with overactive bladder symptoms a preliminary and experimental study. Eur. Urol. Suppl. 2011;10(2):289–290.


72. Vijaya G., Digesu G.A., Derpapas A., Panayi D.C., Fernando R., Khullar V. Changes in detrusor muscle oxygenation during detrusor overactivity contractions. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012;163(1):104–107. https://doi.org/10.1016/j.ejogrb.2012.03.030.


73. Macnab A.J., Shadgan B., Stothers L. The evolution of wireless near infrared spectroscopy applications in urology and rationale for clinical use. J. Near Infrared Spec. 2012;20(1):57–73. https://doi.org/10.1255/jnirs.963


74. Mastoroudes H., Giarenis I., Vella M. et al. Use of near infrared spectroscopy as an alternative to videourodynamics to detect detrusor overactivity in women with the overactive bladder syndrome. Urology. 2012;80(3):547–550. https://doi.org/10.1016/j.urology.2012.05.036.


75. Romai L., Tuzzolo P., Civitella A. et al. Bladder NIRS: a non-invasive method functional to distinguish between detrusor underactivity (DU) and bladder outlet obstruction (BOO), in men with LUTS. Eur. Urol. 2020;20:S177–178. DOI: 10.1016/S0302-2838(22)00924-1.


76. Shadgan B., Macnab A., Nigro M., Stothers L. Monitoring of lower urinary tract function in patients with spinal cord injury using near infrared spectroscopy. Proceedings Volume 8207, Photonic Therapeutics and Diagnostics VIII. 2012. DOI:10.1117/12.906051.


77. Shadgan B., Stothers L., Macnab A.J. A transvaginal probe for near-infrared spectroscopic monitoring of the bladder detrusor muscle and urethral sphincter. Spectroscopy. 2008;22(6):429–436. DOI: 10.3233/SPE-2008-0367.


78. Macnab A.J., Stothers L. Measurement of exercise treatment effect from pelvic floor muscle therapy for lower urinary tract dysfunction using near infrared spectroscopy / Proc. SPIE 11638, Biophotonics in Exercise Science, Sports Medicine, Health Monitoring Technologies, and Wearables II. March 5, 2021. https://doi.org/10.1117/12.2586348


79. Koven A., Herschorn S. NIRS: Past, Present, and Future in Functional Urology. Curr. Bladder Dysfunct. Rep. 2022;17:241–249. https://doi.org/10.1007/s11884-022-00665-4.


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: Т. А. Лелявина – д.м.н., ведущий научный сотрудник НИО микроциркуляции и метаболизма миокарда Института экспериментальной медицины ФГБУ «НМИЦ им. В. А. Алмазова» Минздрава России; научный сотрудник научного отдела СПб ГБУЗ «Клиническая больница Святителя Луки», Санкт-Петербург, Россия; e-mail: tatianalelyavina@mail.ru


Похожие статьи


Бионика Медиа