Современные методы определения положительного хирургического края во время выполнения радикальной простатэктомии


DOI: https://dx.doi.org/10.18565/urology.2023.1.106-113

И.Ш. Бядретдинов, С.В. Котов

1) РНИМУ им. Н.И . Пирогова Минздрава России, Москва, Россия; 2) ГБУЗ Москвы «Городская клиническая больница № 1 им. Н. И. Пирогова» Департамента здравоохранения г. Москвы, Москва, Россия
Определение предикторов развития биохимического рецидива (БР) является одной из основополагающих задач, решение которой необходимо для достижения максимально эффективного лечения рака предстательной железы (РПЖ). Одним из активно изучаемых предикторов БР является наличие положительного хирургического края. Разработка методов определения статуса хирургического края во время выполнения оперативного вмешательства – это актуальное направление, способное повысить эффективность лечения РПЖ.
Актуальным является проведение обзора современных методов диагностики статуса хирургического края при выполнении радикальной простатэктомии.
В статье представлен описательный научный обзор, выполненный на кафедре урологии и андрологии ЛФ РНИМУ им. Н. И. Пирогова на базе ГКБ № 1 им. Н. И. Пирогова. В сентябре 2021 г. проведен комплексный поиск литературы, посвященной интраоперационным методам определения статуса хирургического края во время выполнения радикальной простатэктомии. Проведен поиск в базах данных PubMed и Web of Science за 1995–2020 гг. по ключевым фразам «рак простаты», «хирургический край», «радикальная простатэктомия», «биохимический рецидив», «методы определения хирургического края». На сегодняшний день разработаны и активно изучаются следующие технологии для оценки статуса хирургического края: использование аминолевулиновой кислоты, оптическая когерентная томография, оптическая спектроскопия, конфокальная лазерная микроскопия, 3D-дополненная реальность, 3D-моделирование, исследование свежезамороженных срезов.

Литература


1. LoebS.,Feng Z., Ross A., Trock B.J., HumphreysE.B. , and Walsh P.C. Can we stop prostate specific antigen testing 10 years after radical prostatectomy? J. Urol. 2011;186(2):500–505. Doi: 10.1016/j.juro.2011.03.116.


2. Isbarn H. et al. Long-term data on the survival of patients with prostate cancer treated with radical prostatectomy in the prostate-specific antigen era. BJU Int. 2010;106(1):37–43. Doi: 10.1111/j.1464-410X.2009.09134. x.


3. KingD.F., KingL.A. A brief historical note on staining by hematoxylin and eosin. Am J Dermatopathol 1986; 8:168.


4. Peng Q. et al. 5-Aminolevulinic acid-based photodynamic therapy: Clinical research and future challenges. Cancer. 1997;79(12):2282–2308.


5. Chou R. et al. Comparative Effectiveness of Fluorescent Versus White Light Cystoscopy for Initial Diagnosis or Surveillance of Bladder Cancer on Clinical Outcomes: Systematic Review and Meta-Analysis. J. Urol. 2017;197(3):548–558. Doi: 10.1016/j.juro.2016.10.061.


6. Zaak D. et al. Photodynamic Diagnosis of Prostate Cancer Using 5-Aminolevulinic Acid-First Clinical Experiences. Urology. 2008;72(2):345–348. Doi: 10.1016/j.urology.2007.12.086.


7. Ganzer R. et al. Intraoperative photodynamic evaluation of surgical margins during endoscopic extraperitoneal radical prostatectomy with the use of 5-aminolevulinic acid. J. Endourol. 2009;23(9):1387–1394. Doi: 10.1089/end.2009.0374.


8. Adam C. et al. Photodynamic Diagnosis Using 5-Aminolevulinic Acid for the Detection of Positive Surgical Margins during Radical Prostatectomy in Patients with Carcinoma of the Prostate: A Multicentre, Prospective, Phase 2 Trial of a Diagnostic Procedure. Eur. Urol. 2009;55(6):1281–1288. Doi: 10.1016/j.eururo.2009.02.027.


9. Inoue et K. al. Application of 5-aminolevulinic acid-mediated photodynamic diagnosis to robot-assisted laparoscopic radical prostatectomy. Urology. 2013;82(5):1175–1178. Doi: 10.1016/j.urology.2013.06.051.


10. Fukuhara H., Inoue K., Kurabayashi A., Furihata M., ShuinT. Performance of 5-aminolevulinic-acid-based photodynamic diagnosis for radical prostatectomy. BMC Urol. 2015;15(1):1–6. Doi: 10.1186/s12894-015-0073-y.


11. D’Amico A.V., Weinstein M., Li X., Richie J.P., and Fujimoto J. Optical coherence tomography as a method for identifying benign and malignant microscopic structures in the prostate gland. Urology. 2000;55(5):783–787. doi: 10.1016/S0090-4295(00)00475-1.


12. Aron M. et al. Preliminary experience with the NirisTM optical coherence tomography system during laparoscopic and robotic prostatectomy. J. Endourol. 2007;21(8):814–818. Doi: 10.1089/end.2006.9938.


13. Dangle P.P., ShahK.K., KaffenbergerB., Patel V.R. The use of high-resolution optical coherence tomography to evaluate rbotic radical prostatectomy specimens. Int. Braz J Urol. 2009;35(3):344–353. Doi: 10.1590/S1677-55382009000300011.


14. Lay A.H. et al. Detecting positive surgical margins: utilisation of light-reflectance spectroscopy on ex vivo prostate specimens. BJU Int. 2016;118(6):885–889. Doi: 10.1111/bju.13503.


15. Salomon G. et al. The Feasibility of Prostate Cancer Detection by Triple Spectroscopy. Eur. Urol. 2009;55(2):376–384. Doi: 10.1016/j. eururo.2008.02.022.


16. Baykara M., DenkçekenT., BassorgunI., AkinY., YucelS., and Canpolat M.. Detecting positive surgical margins using single optical fiber probe during radical prostatectomy: A pilot study. Urology. 2014;83(6):1438–1442. Doi: 10.1016/j.urology.2014.02.020.


17. Morgan M.S.C. et al. Light Reflectance Spectroscopy to Detect Positive Surgical Margins on Prostate Cancer Specimens. J. Urol. 2016;195(2):479– 484. Doi: 10.1016/j.juro.2015.05.115.


18. Crow P., Molckovsky A., Stone N., Uff J., Wilson B., Wongkeesong L.M. Assessment of fiberoptic near-infrared raman spectroscopy for diagnosis of bladder and prostate cancer. Urology. 2005;65(6):1126–1130. Doi: 10.1016/j.urology.2004.12.058.


19. Pinto M. et al. Integration of a Raman spectroscopy system to a robotic-assisted surgical system for real-time tissue characterization during radical prostatectomy procedures. J. Biomed. Opt. 2019;24(02):1. Doi: 10.1117/1. jbo.24.2.025001.


20. Aubertin K. et al. Mesoscopic characterization of prostate cancer using Raman spectroscopy: potential for diagnostics and therapeutics. BJU Int. 2018;122(2):326–336. Doi: 10.1111/bju.14199.


21. Park J.J. et al. Diagnostic accuracy of Raman spectroscopy for prostate cancer: A systematic review and meta-analysis. Transl. Androl. Urol. 2021;10(2):574–583. Doi: 10.21037/TAU-20-924.


22. Pawley J.B.. Handbook of Confocal Microscopy. Springer Sci. Bus. Media. 2006;236.


23. Ragazzi M., Longo C., and Piana S.. Ex Vivo (fluorescence) confocal microscopy in surgical pathology: State of the art. Adv. Anat. Pathol. 2016;23(3):159–169. Doi: 10.1097/PAP.0000000000000114.


24. Chen S.P., LiaoJ.C. . Confocal laser endomicroscopy of bladder and upper tract urothelial carcinoma: A new era of optical diagnosis? Curr. Urol. Rep. 2014;15(9). Doi: 10.1007/s11934-014-0437-y.


25. Lopez et al. Intraoperative Optical Biopsy during Robotic Assisted Radical Prostatectomy Using Confocal Endomicroscopy. J. Urol. 2016;195(4):1110–1117. Doi: 10.1016/j.juro.2015.10.182.


26. Panarello D., Compérat E., Seyde O., A. Colau, C. Terrone, B. Guillonneau. Atlas of Ex Vivo Prostate Tissue and Cancer Images Using Confocal Laser Endomicroscopy: A Project for Intraoperative Positive Surgical Margin Detection During Radical Prostatectomy. Eur. Urol. Focus. 2020;6(5):941–958. Doi: 10.1016/j.euf.2019.01.004.


27. Puliatti S. et al. Ex vivo fluorescence confocal microscopy: the first application for real-time pathological examination of prostatic tissue. BJU Int. 2019;124(3):469–476. Doi: 10.1111/bju.14754.


28. Franken R.J.P.M. et al. Microsurgery without a microscope: Laboratory evaluation of a three-dimensional on-screen microsurgery system. Microsurgery. 1995;16(11):746–751. Doi: 10.1002/micr.1920161109.


29. Spicer M.A., Apuzzo M.L.J., Kelly P.J., Benzel E.C., Adler J.R. Virtual reality surgery: Neurosurgery and the contemporary landscape. Neurosurgery. 2003;52(3):489–497. Doi: 10.1227/01.neu.0000047812.42726.56.


30. Wierzbicki R. et al. 3D mixed-reality visualization of medical imaging data as a supporting tool for innovative, minimally invasive surgery for gastrointestinal tumors and systemic treatment as a new path in personalized treatment of advanced cancer diseases. J. Cancer Res. Clin. Oncol. 2021. no. 0123456789. Doi: 10.1007/s00432-021-03680-w.


31. Teatini R.P. Kumar O., Elle J., Wiig O. Mixed reality as a novel tool for diagnostic and surgical navigation in orthopaedics. Int. J. Comput. Assist. Radiol. Surg. 2021;16(3):407–414. Doi: 10.1007/s11548-020-02302-z.


32. Cofano F. et al. Augmented Reality in Medical Practice: From Spine Surgery to Remote Assistance. Front. Surg. 2021;8:1–10. Doi: 10.3389/ fsurg.2021.657901.


33. Wang S. et al. The Use of Three-dimensional Visualization Techniques for Prostate Procedures: A Systematic Review. Eur. Urol. Focus. 2021;7(6):1274–1286. Doi: 10.1016/j.euf.2020.08.002.


34. Ukimura О. et al. Three-dimensional surgical navigation model with tilepro display during robot-assisted radical prostatectomy. J. Endourol. 2014;28(6):625–630. Doi: 10.1089/end.2013.0749.


35. Porpiglia F. et al. Three-dimensional Elastic Augmented-reality Robot-assisted Radical Prostatectomy Using Hyperaccuracy Three-dimensional Reconstruction Technology: A Step Further in the Identification of Capsular Involvement. Eur. Urol. 2019;76(4):505–514. Doi: 10.1016/j. eururo.2019.03.037.


36. Gal A.A. In search of the origins of modern surgical pathology. Adv. Anat. Pathol. 2001;8(1):1–13. doi: 10.1097/00125480-200101000-00001.


37. Dey P. Basic and Advanced Laboratory Techniques in Histopathology and Cytology. Basic Adv. Lab. Tech. Histopathol. Cytol. 2018;51–55. Doi: 10.1007/978-981-10-8252-8.


38. Eissa A. et al. ‘Real-time’ Assessment of Surgical Margins During Radical Prostatectomy: State-of-the-Art. Clin. Genitourin. Cancer. 2020;18(2):95–104. Doi: 10.1016/j.clgc.2019.07.012.


39. Sooriakumaran P., Dev H.S., Skarecky D., AhleringT. The importance of surgical margins in prostate cancer. J. Surg. Oncol. 2016;113(3):310–315. Doi: 10.1002/jso.24109.


40. Bianchi L. et al. Patterns of positive surgical margins after open radical prostatectomy and their association with clinical recurrence. Minerva Urol. e Nefrol. 2020;72(4):464–473. Doi: 10.23736/S0393-2249.19.03269-7.


41. Dev H.S. et al. Surgical margin length and location affect recurrence rates after robotic prostatectomy. Urol. Oncol. Semin. Orig. Investig. 2015;33(3):109.e7-109.e13. Doi: 10.1016/j.urolonc.2014.11.005.


42. Ye H. et al. Intraoperative frozen section analysis of urethral margin biopsies during radical prostatectomy. Urology. 2011;78(2):399–404. Doi: 10.1016/j.urology.2011.03.022.


43. Nguyen L.N. et al. The Risks and Benefits of Cavernous Neurovascular Bundle Sparing during Radical Prostatectomy: A Systematic Review and Meta-Analysis. J. Urol. 2017;198(4):760–769. Doi: 10.1016/j. juro.2017.02.3344.


44. Zhang L. et al. Surgical margin status and its impact on prostate cancer prognosis after radical prostatectomy: a meta-analysis. World J. Urol. 2018;36(11):1803–1815. Doi: 10.1007/s00345-018-2333-4.


45. Vasdev N., Soosainathan A., Kanzara T., Lane T., Boustead G., Adshead J. PE28: Intraoperative frozen section of the prostate to reduce the risk of positive margin whilst ensuring nerve sparing in patients with intermediate and high-risk prostate cancer during robotic radical prostatectomy – first UK centre experience. Eur. Urol. 2014;13(Suppl.)3:26. Doi: 10.1016/ s1569-9056(14)50219-9.


46. Eichelberg C. et al. Frozen Section for the Management of Intraoperatively Detected Palpable Tumor Lesions During Nerve-Sparing Scheduled Radical Prostatectomy. Eur. Urol. 2006;49(6):1011–1018. Doi: 10.1016/j. eururo.2006.02.035.


47. Bianchi R. et al. Multiparametric magnetic resonance imaging and frozen-section analysis efficiently predict upgrading, upstaging, and extraprostatic extension in patients undergoing nerve-sparing robotic-assisted radical prostatectomy. Med. (United States). 2016;95(40). Doi: 10.1097/ MD.0000000000004519.


48. Schlomm T. et al. Neurovascular structure-adjacent frozen-section examination (NeuroSAFE) increases nerve-sparing frequency and reduces positive surgical margins in open and robot-assisted laparoscopic radical prostatectomy: Experience after 11 069 consecutive patients. Eur. Urol. 2012;62(2):333–340. Doi: 10.1016/j.eururo.2012.04.057.


49. Beyer B. et al. A feasible and time-efficient adaptation of NeuroSAFE for da Vinci robot-assisted radical prostatectomy. Eur. Urol. 2014;66(1):138–144. Doi: 10.1016/j.eururo.2013.12.014.


50. Mirmilstein G. et al. The neurovascular structure-adjacent frozen-section examination (NeuroSAFE) approach to nerve sparing in robot-assisted laparoscopic radical prostatectomy in a British setting – a prospective observational comparative study. BJU Int. 2018;121(6):854–862. Doi: 10.1111/bju.14078.


51. Goharderakhshan R.Z., Sudilovsky D., Carroll L.A., Grossfeld G.D., Marn R., Carroll P.R. Utility of intraoperative frozen section analysis of surgical margins in region of neurovascular bundles at radical prostatectomy. Urology. 2022;59(5):709–714. Doi: 10.1016/S0090-4295(02)01539-X.


52. Hatzichristodoulou G. et al. Intraoperative frozen section monitoring during nerve-sparing radical prostatectomy: evaluation of partial secondary resection of neurovascular bundles and its effect on oncologic and functional outcome. World J. Urol. 2016;34(2):229–236. Doi: 10.1007/s00345-015-1623-3.


53. Nakamura K., Kasraeian A., AnaiS., Pendleton J., Rosser C.J. Positive surgical margins at radical prostatectomy: Importance of intra-operative bladder neck frozen sections. Int. Braz J Urol. 2007;33(6):746–751. Doi: 10.1590/S1677-55382007000600002.


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: И. Ш. Бядретдинов – аспирант кафедры урологии и андрологии РНИМУ им. Н. И. Пирогова Минздрава России, Москва, Россия; e-mail: byadretdinov.i@gmail.com


Похожие статьи


Бионика Медиа