Регенеративные технологии при реконструктивных операциях на уретре: обзор литературы. Часть 1


DOI: https://dx.doi.org/10.18565/urology.2023.5.113-117

В.Н. Павлов, Р.А. Казихинуров, А.А. Казихинуров, Р.И. Гуспанов, Б.И. Шамсов, А.Г. Вардикян, Р.Р. Казихинуров

1) ФГБОУ ВО «Башкирский государственный медицинский университет» Министерства здравоохранения Российской Федерации, Уфа, Россия; 2) ФГБОУ ВО РНИМУ им. Н. И. Пирогова; Москва, Россия
Реконструктивная урология остается одной из самых сложных и динамично развивающихся разделов современной урологии, где большая доля оперативных вмешательств приходится на хирургию уретры. Наиболее частой причиной стриктур уретры являются ятрогенные повреждения, травмы и инфекции. Несмотря на достигнутые успехи, реконструктивные операции на уретре (уретропластика) остаются одной из самых сложных и нерешенных задач урологии. Использование регенеративных технологий в медицине, по нашему мнению, является наиболее перспективным направлением, которое может улучшать результаты реконструктивных вмешательств на уретре благодаря снижению риска образования фиброза и стимуляции неоангиогенеза. Применение тканевой инженерии представляет возможность создания органоспецифичных трансплантантов, что может обладать большим потенциалом при аугментационной и заместительной уретропластиках. Предпочтение отдается биоразлагаемым природным биоимплантам. В этом обзоре определены ограничения и проблемы, возникающие в реконструктивной урологии, и обсуждаются соответствующие достижения тканевой инженерии в области регенерации уретры.
В первой части литературного обзора представлены данные об использовании регенеративных технологий в медицине, потенциале биоматериалов и клеточной терапии при уретропластике и обсуждаются экспериментальные модели. Тем не менее ряд нерешенных вопросов ограничивает применение данных технологий в клинической практике, что требует проведения дальнейших исследований в этом направлении.

Литература


1. Pastorek D., Culenova M., Csobonyeiova M., Skuciova V., Danisovic L., Ziaran S. Tissue Engineering of the Urethra: From Bench to Bedside. Biomedicines. 2021;9(12):1917. Doi: 10.3390/biomedicines9121917.


2. Kolpatsinidi F.G., Kyzlasov P.S., Martov A.G., etc. Surgical treatment of extended urethral strictures. Astrakhan Medical Journal= Astrahanskij medicinskij žurnal. 2019;14(3):36–45. Russian (Колпациниди Ф.Г., Кызласов П.С., Мартов А.Г. и др. Оперативное лечение протяженных стриктур уретры. Астраханский медицинский журнал. 2019;14(3):36–45).


3. Waterloos M., Verla W. Female Urethroplasty: A Practical Guide Emphasizing Diagnosis and Surgical Treatment of Female Urethral Stricture Disease. Biomed Res Int. 2019;2019:6715257. doi: 10.1155/2019/6715257.


4. Edgar L., Pu T., Porter B., Aziz J.M., La Pointe C., Asthana A., Orlando G. Regenerative medicine, organ bioengineering and transplantation. Br J Surg. 2020;107(7):793–800. Doi: 10.1002/bjs.11686.


5. Kanematsu A. Regenerative medicine for urological tissues: Updated review 2018. Int J Urol. 2018;25(9):788–791. Doi: 10.1111/iju.13762.


6. Pederzoli F., Joice G., Salonia A., Bivalacqua T.J., Sopko N.A. Regenerative and engineered options for urethroplasty. Nat Rev Urol. 2019;16(8):453–464. Doi: 10.1038/s41585-019-0198-y.


7. Bensemmane L., Squiban C., Demarquay C., Mathieu N., Benderitter M., Le Guen B., Milliat F., Linard C. The stromal vascular fraction mitigates radiation-induced gastrointestinal syndrome in mice. Stem Cell Res Ther. 2021;12(1):309. Doi: 10.1186/s13287-021-02373-y.


8. Carstens M.H., Quintana F.J., Calderwood S.T., Sevilla J.P., Ríos A.B., Rivera C.M., Calero D.W., Zelaya M.L., Garcia N., Bertram K.A., Rigdon J., Dos-Anjos S., Correa D. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: Safety and evidence of efficacy at 1 year. Stem Cells Transl Med. 2021;10(8):1138–1147. Doi: 10.1002/sctm.20-0497.


9. Davis N.F., Cunnane E.M., Quinlan M.R., Mulvihill J.J., Lawrentschuk N., Bolton D.M., Walsh M.T. Biomaterials and Regenerative Medicine in Urology. Adv Exp Med Biol. 2018;1107:189–198. doi: 10.1007/5584_2017_139.


10. Marin E., Boschetto F., Pezzotti G. Biomaterials and biocompatibility: An historical overview. J Biomed Mater Res A. 2020;108(8):1617–1633. Doi: 10.1002/jbm.a.36930.


11. Fayzullin A.L., Shekhter A.B., Istranov L.P., Istranova E.V., Rudenko T.G., Guller A.E., Aboyants R.K., Timashev P.S., Butnaru D.V. Bioresorbable collagen materials in surgery: 50 years of success. Sechenov Medical Journal. 2020; 11(1): 59–70. https://doi.org/10.47093/2218-7332.2020.11.1.59-70. Russian (Файзуллин А.Л., Шехтер А.Б., Истранов Л.П. и др. Биорезорбируемые коллагеновые материалы в хирургии: 50 лет успеха. Сеченовский вестник. 2020;11(1):59–70. https://doi.org/10.47093/2218-7332.2020.11.1.59-70).


12. Facklam A.L., Volpatti L.R., Anderson D.G. Biomaterials for Personalized Cell Therapy. Adv Mater. 2020;32(13):e1902005. Doi: 10.1002/adma.201902005.


13. Culenova M., Bakos D., Ziaran S., Bodnarova S., Varga I., Danisovic L. Bioengineered Scaffolds as Substitutes for Grafts for Urethra Reconstruction. Materials (Basel). 2019;12(20):3449. Doi: 10.3390/ma12203449.


14. Brovold M., Almeida J.I., Pla-Palacín I., Sainz-Arnal P., Sánchez-Romero N., Rivas J.J., Almeida H., Dachary P.R., Serrano-Aulló T., Soker S., Baptista P.M. Naturally-Derived Biomaterials for Tissue Engineering Applications. Adv Exp Med Biol. 2018;1077:421–449. Doi: 10.1007/978-981-13-0947-2_23.


15. Masaeli R., Zandsalimi K., Tayebi L. Biomaterials Evaluation: Conceptual Refinements and Practical Reforms. Ther Innov Regul Sci. 2019;53(1):120–127. Doi: 10.1177/2168479018774320.


16. Mangir N., Wilson K.J., Osman N.I., Chapple C.R. Current state of urethral tissue engineering. Curr Opin Urol. 2019;29(4):385–393. Doi: 10.1097/MOU.0000000000000637.


17. Austin M.J., Rosales A.M. Tunable biomaterials from synthetic, sequence-controlled polymers. Biomater Sci. 2019;7(2):490–505. Doi: 10.1039/c8bm01215f.


18. García-Perdomo H.A., Jurado-Penagos A. Application of regenerative medicine and 3d bioprinting in urology. Actas Urol Esp (Engl Ed). 2022;46(6):323–328. English, Spanish. Doi: 10.1016/j.acuroe.2022.03.006.


19. Beiko DT, Knudsen BE, Watterson JD, Denstedt JD. Biomaterials in urology. Curr Urol Rep. 2003 Feb;4(1):51-5. doi: 10.1007/s11934-003-0057-4.


20. Zhu D., Jiang Z., Li N., Wang X., Ren L., Ye Y., Pan Y., Yang G. Insights into the use of genetically modified decellularized biomaterials for tissue engineering and regenerative medicine. Adv Drug Deliv Rev. 2022;188:114413. Doi: 10.1016/j.addr.2022.114413.


21. Beiko D.T., Knudsen B.E., Watterson J.D., Cadieux P.A., Reid G., Denstedt J.D. Urinary tract biomaterials. J Urol. 2004;171(6 Pt 1):2438–2444. Doi: 10.1097/01.ju.0000125001.56045.6c.


22. Kwaan H.C. Complications of Implanted Nonbiologic Devices-An Overview. Semin Thromb Hemost. 2018;44(1):7–11. doi: 10.1055/s-0037-1608798.


23. Gorelova A.A., Muravyev A.N., Vinogradova T.I., Gorelov A.I., Yudintseva N.M., Orlova N.V., Nashchekina Yu.A., Khotin M.G., Lebedev A.A., Peshkov N.O., Yablonsky P.K. Tissue engineering technologies in urethral reconstruction. Medical Alliance. 2018;3:75-82. Russian (Горелова А.А., Муравьев А.Н., Виноградова Т.И., Горелов А.И., Юдинцева Н.М., Орлова Н.В., Нащекина Ю.А., Хотин М.Г., Лебедев А.А., Пешков Н.О., Яблонский П.К. Тканеинженерные технологии в реконструкции уретры. Медицинский альянс. 2018;3:75–82).


24. Rajasekaran M., Stein P., Parsons C.L. Toxic factors in human urine that injure urothelium. Int J Urol. 2006;13(4):409–414. Doi: 10.1111/j.1442-2042.2006.01301.x.


25. de Kemp V., de Graaf P., Fledderus J.O., Ruud Bosch J.L., de Kort L.M. Tissue engineering for human urethral reconstruction: systematic review of recent literature. PLoS One. 2015;10(2):e0118653. Doi: 10.1371/journal.pone.0118653.


26. Wood D., Southgate J. Current status of tissue engineering in urology. Curr Opin Urol. 2008;18(6):564–569. Doi: 10.1097/MOU.0b013e32830f9402.


27. Orabi H., Bouhout S., Morissette A., Rousseau A., Chabaud S., Bolduc S. Tissue engineering of urinary bladder and urethra: advances from bench to patients. Scientific World Journal. 2013;2013:154564. doi: 10.1155/2013/154564.


28. Larsson H.M. Is tissue engineering of patient-specific oral mucosa grafts the future of urethral reconstruction? EBioMedicine. 2017;24:30–31. Doi: 10.1016/j.ebiom.2017.09.006.


29. Glybochko P.V., Aljaev J.G., Nikolenko V.N., et al. Tissue-engineered substitution urethroplasty based on decellularized vascular matrix and autologous cells of the buccal mucosa: the first experience. Urologiia. 2015;3:4–10. Russian (Глыбочко П.В., Аляев Ю.Г., Николенко В.Н. и др. Заместительная уретропластика с использованием тканеинженерной конструкции на основе децеллюляризированной сосудистой матрицы и аутологичных клеток слизистой оболочки щеки: первый опыт. Урология. 2015;3:4–10).


30. Kajbafzadeh A.M., Abbasioun R., Sabetkish S., Sabetkish N., Rahmani P., Tavakkolitabassi K., Arshadi H. Future Prospects for Human Tissue Engineered Urethra Transplantation: Decellularization and Recellularization-Based Urethra Regeneration. Ann Biomed Eng. 2017;45(7):1795–1806. Doi: 10.1007/s10439-017-1857-x.


31. Aboushwareb T., Atala A. Stem cells in urology. Nat Clin Pract Urol. 2008;5(11):621–631. Doi: 10.1038/ncpuro1228.


32. Boumelhem B.B., Fraser S.T., Assinder S.J. Differentiation of Urothelium from Mouse Embryonic Stem Cells in Chemically Defined Conditions. Methods Mol Biol. 2019;2029:103–115. Doi: 10.1007/978-1-4939-9631-5_9.


33. Wang X. Stem cells in tissues, organoids, and cancers. Cell Mol Life Sci. 2019;76(20):4043–4070. doi: 10.1007/s00018-019-03199-x.


34. Li Y., Wen Y., Wang Z., Wei Y., Wani P., Green M., Swaminathan G., Ramamurthi A., Pera R.R., Chen B. Smooth Muscle Progenitor Cells Derived From Human Pluripotent Stem Cells Induce Histologic Changes in Injured Urethral Sphincter. Stem Cells Transl Med. 2016;5(12):1719–1729. Doi: 10.5966/sctm.2016-0035.


35. Zhuang G., Wen Y., Briggs M., Shao Q., Tran D., Wang H., Chen B. Secretomes of human pluripotent stem cell-derived smooth muscle cell progenitors upregulate extracellular matrix metabolism in the lower urinary tract and vagina. Stem Cell Res Ther. 2021;12(1):228. Doi: 10.1186/s13287-021-02292-y.


36. Osborn S.L., Thangappan R., Luria A., Lee J.H., Nolta J., Kurzrock E.A. Induction of human embryonic and induced pluripotent stem cells into urothelium. Stem Cells Transl Med. 2014;3(5):610–619. Doi: 10.5966/sctm.2013-0131.


37. Svistunov A.A., Butnaru D.V., Timashev P.S., etc. A method for obtaining multipotent mesenchymal stromal cells from the umbilical cord of a newborn. Patent RU2744301C1. Russian (Свистунов А.А., Бутнару Д.В., Тимашев П.С. и др. Способ получения мультипотентных мезенхимных стромальных клеток из пупочного канатика новорожденного. Патент RU2744301C1).


38. Suman S., Domingues A., Ratajczak J., Ratajczak M.Z. Potential Clinical Applications of Stem Cells in Regenerative Medicine. Adv Exp Med Biol. 2019;1201:1–22. Doi: 10.1007/978-3-030-31206-0_1.


39. Hatina J., Schulz W.A. Stem cells in the biology of normal urothelium and urothelial carcinoma. Neoplasma. 2012;59(6):728–736. Doi: 10.4149/neo_2012_089.


40. Polymeri A., Giannobile W.V., Kaigler D. Bone Marrow Stromal Stem Cells in Tissue Engineering and Regenerative Medicine. Horm Metab Res. 2016;48(11):700–713. Doi: 10.1055/s-0042-118458.


41. Andia I., Maffulli N., Burgos-Alonso N. Stromal vascular fraction technologies and clinical applications. Expert Opin Biol Ther. 2019;19(12):1289–1305. Doi: 10.1080/14712598.2019.1671970.


42. Kotov S.V., Semenov M.K. Iatrogenic urethral strictures in men: prevalence and main etiological factors. Experimental and clinical urology. 2019;11(3):152–157. Russian (Котов С.В., Семенов М.К. Ятрогенные стриктуры уретры у мужчин: распространенность и основные этиологические факторы. Экспериментальная и клиническая урология. 2019;11(3):152–15)7.


43. Bi H., Li H., Zhang C., Mao Y., Nie F., Xing Y., Sha W., Wang X., Irwin D.M., Tan H. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process. Stem Cell Res Ther. 2019;10(1):302. Doi: 10.1186/s13287-019-1415-6.


44. Boissier R, Magalon J, Sabatier F, Veran J, Giraudo L, Giusiano S, Garcia S, Dignat-George F, Arnaud L, Magalon G, Lechevallier E, Berdah S, Karsenty G. Histological and Urodynamic Effects of Autologous Stromal Vascular Fraction Extracted from Fat Tissue with Minimal Ex Vivo Manipulation in a Porcine Model of Intrinsic Sphincter Deficiency. J Urol. 2016;196(3):934–942. Doi: 10.1016/j.juro.2016.04.099.


45. Almeida F.G., Nobre Y.T., Leite K.R., Bruschini H. Autologous transplantation of adult adipose derived stem cells into rabbit urethral wall. Int Urogynecol J. 2010;21(6):743–748. Doi: 10.1007/s00192-009-1090-8.


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: Р. А. Казихинуров – к.м.н., доцент кафедры урологии с курсом ИДПО ФГБОУ ВО «Башкирский государственный медицинский университет» Министерства здравоохранения Российской Федерации, Уфа, Россия; e-mail: royuro@mail.ru


Похожие статьи


Бионика Медиа