Разработка системы на основе глубокого обучения для поддержки медицинских решений при определении оценки Pi-RADS


DOI: https://dx.doi.org/10.18565/urology.2024.6.5-11

He Mingze, Еникеев М.Э., Рзаев Р.Т., Черненький И.М., Фельдшеров М.В., Li He, Hu Kebang, Шпоть Е.В., Глыбочко П.В.

1) Институт урологии и репродуктивного здоровья человека, Сеченовский университет, Москва, Россия; 2) Отделение лучевой диагностики университетской клинической больницы № 2, Сеченовский университет, Москва, Россия; 3) Отделение лучевой диагностики, Первая больница Цзилиньского университета, Чанчунь, Китай; 4) Отделение урологии, Первая больница Цзилиньского университета, Чанчунь, Китай
Цель исследования заключается в разработке системы компьютерной диагностики (computer-aided diagnosis, CAD) с целью минимизации риска человеческих ошибок при градации по системе PI-RADS, что способствует улучшению процесса принятия врачебных решений.
Материалы и методы. Ретроспективное многоцентровое исследование включило 136 пациентов, из которых 108 составили больные раком предстательной железы (РПЖ) (оценка PI-RADS 4–5)
и 28 случаев – пациенты с доброкачественными заболеваниями предстательной железы (оценка PI-RADS 1–2). Для анализа изображений была применена архитектура 3D U-Net, обрабатывающая T2-взвешенные изображения (T2W), диффузионно-взвешенные изображения (DWI) и изображения с динамическим контрастированием (DCE). Статистический анализ проводили с использованием библиотек Python для оценки диагностической эффективности, включая чувствительность, специфичность, коэффициенты сходства Dice и площадь под кривой характеристик работы приемника (AUC).
Результаты. Система DL-CAD достигла средней точности 78%, чувствительности 60% и специфичности 84% для выявления очагов поражений в простате. Коэффициент сходства Dice для сегментации предстательной железы составил 0,71, а AUC – 81,16%. Система продемонстрировала высокую специфичность в снижении ложноположительных результатов, что после оптимизации системы сможет минимизировать ненужные биопсии и «избыточное» лечение.
Заключение. Система DL-CAD демонстрирует потенциал в поддержке процесса принятия клинических решений для пациентов с клинически значимым РПЖ за счет повышения точности диагностики, особенно в минимизации вариабельности при интерпретации результатов несколькими рентгенологами (межэкспертная вариабельность). Несмотря на высокую специфичность, требуются дополнительные исследования для улучшения чувствительности и точности сегментации, что может быть достигнуто за счет использования более крупных массивов данных и передовых методов DL. Дальнейшая многоцентровая валидация необходима для более активной интеграции данной системы в клиническую практику.

Литература


1. Song JM, Kim CB, Chung HC, Kane RL. Prostate-specific antigen, digital rectal examination and transrectal ultrasonography: a meta-analysis for this diagnostic triad of prostate cancer in symptomatic korean men. Yonsei medical journal. 2005;46(3):414-24. doi: 10.3349/ymj.2005.46.3.414.


2. Moe A, Hayne D. Transrectal ultrasound biopsy of the prostate: does it still have a role in prostate cancer diagnosis? Translational andrology and urology. 2020;9(6):3018-24. doi: 10.21037/tau.2019.09.37.


3. Rezvykh I.A., Rapoport L.M., Belysheva E.S. et al. mpMRI in planning nerve-sparing RARP in patients with localized prostate cancer of low and intermediate risk of progression. Pilot research. Russian Electronic Journal of Radiology. 2020;10(2):140-147. DOI 10.21569/2222-7415-2020-10-2-140-147. Russian (Резвых И.А., Рапопорт Л.М., Белышева Е.С. и др. МПМРТ в планировании нервосберегающей робот-ассистированной радикальной простатэктомии у больных с локализованным раком предстательной железы низкого и промежуточного рисков прогрессии. Пилотное исследование/ Российский электронный журнал лучевой диагностики. 2020;10(2):140-147. DOI 10.21569/2222-7415-2020-10-2-140-147).


4. Rezvykh I.A., Rapoport L.M., Chuvalov L.L. Multiparametric MRI in planning of organ-sparing robot-assisted radical prostatectomy for treatment of localized prostate cancer with low and intermediate risk of progression. Andrology and Genital Surgery. 2021; 22 (2): 35-44. DOI 10.17650/1726-9784-2021-22-2-35-44. Russian (Резвых И.А., Рапопорт Л.М., Чувалов Л.Л. и др. Мультипараметрическая МРТ в планировании анатомосберегающей робот-ассистированной радикальной простатэктомии при локализованном раке предстательной железы низкого и промежуточного риска прогрессирования. Андрология и генитальная хирургия. 2021; 22 (2): 35-44. DOI: 10.17650/1726-9784-2021-22-2-35-44).


5. Benelli A, Vaccaro C, Guzzo S, Nedbal C, Varca V, Gregori A. The role of MRI/TRUS fusion biopsy in the diagnosis of clinically significant prostate cancer. Therapeutic advances in urology. 2020;12:1756287220916613. doi: 10.1177/1756287220916613.


6. Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. The New England journal of medicine. 2018;378(19):1767-77. doi: 10.1056/NEJMoa1801993.


7. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS Prostate Imaging - Reporting and Data System: 2015, Version 2. European urology. 2016;69(1):16-40. doi: 10.1016/j.eururo.2015.08.052.


8. van der Leest M, Cornel E, Israël B, Hendriks R, Padhani AR, Hoogenboom M, et al. Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. European urology. 2019;75(4):570-8. doi: 10.1016/j.eururo.2018.11.023.


9. Gupta RT, Mehta KA, Turkbey B, Verma S. PI-RADS: Past, present, and future. Journal of magnetic resonance imaging : JMRI. 2020;52(1):33-53. doi: 10.1002/jmri.26896.


10. Song Y, Zhang YD, Yan X, Liu H, Zhou M, Hu B, et al. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. Journal of magnetic resonance imaging : JMRI. 2018;48(6):1570-7. doi: 10.1002/jmri.26047.


11. Sanders JW, Mok H, Hanania AN, Venkatesan AM, Tang C, Bruno TL, et al. Computer-aided segmentation on MRI for prostate radiotherapy, Part I: Quantifying human interobserver variability of the prostate and organs at risk and its impact on radiation dosimetry. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. 2022;169:124-31. doi: 10.1016/j.radonc.2021.12.011.


12. Brembilla G, Dell’Oglio P, Stabile A, Damascelli A, Brunetti L, Ravelli S, et al. Interreader variability in prostate MRI reporting using Prostate Imaging Reporting and Data System version 2.1. European radiology. 2020;30(6):3383-92. doi: 10.1007/s00330-019-06654-2.


13. Smith CP, Harmon SA, Barrett T, Bittencourt LK, Law YM, Shebel H, et al. Intra- and interreader reproducibility of PI-RADSv2: A multireader study. Journal of magnetic resonance imaging : JMRI. 2019;49(6):1694-703. doi: 10.1002/jmri.26555.


14. Barragán-Montero A, Javaid U, Valdés G, Nguyen D, Desbordes P, Macq B, et al. Artificial intelligence and machine learning for medical imaging: A technology review. Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB). 2021;83:242-56. doi: 10.1016/j.ejmp.2021.04.016.


15. Yang R, Yu Y. Artificial Convolutional Neural Network in Object Detection and Semantic Segmentation for Medical Imaging Analysis. Frontiers in oncology. 2021;11:638182. doi: 10.3389/fonc.2021.638182.


16. He M, Cao Y, Chi C, Yang X, Ramin R, Wang S, et al. Research progress on deep learning in magnetic resonance imaging-based diagnosis and treatment of prostate cancer: a review on the current status and perspectives. Front Oncol. 2023;13:1189370. doi: 10.3389/fonc.2023.1189370.


17. Chen F, Cen S, Palmer S. Application of Prostate Imaging Reporting and Data System Version 2 (PI-RADS v2): Interobserver Agreement and Positive Predictive Value for Localization of Intermediate- and High-Grade Prostate Cancers on Multiparametric Magnetic Resonance Imaging. Academic radiology. 2017;24(9):1101-6. doi: 10.1016/j.acra.2017.03.019.


18. Girometti R, Giannarini G, Greco F, Isola M, Cereser L, Como G, et al. Interreader agreement of PI-RADS v. 2 in assessing prostate cancer with multiparametric MRI: A study using whole-mount histology as the standard of reference. Journal of magnetic resonance imaging : JMRI. 2019;49(2):546-55. doi: 10.1002/jmri.26220.


19. Min X, Li M, Dong D, Feng Z, Zhang P, Ke Z, et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method. Eur J Radiol. 2019;115:16-21. doi: 10.1016/j.ejrad.2019.03.010.


20. Liu Y, Zheng H, Liang Z, Miao Q, Brisbane WG, Marks LS, et al. Textured-Based Deep Learning in Prostate Cancer Classification with 3T Multiparametric MRI: Comparison with PI-RADS-Based Classification. Diagnostics (Basel, Switzerland). 2021;11(10). doi: 10.3390/diagnostics11101785.


21. Aldoj N, Lukas S, Dewey M, Penzkofer T. Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network. Eur Radiol. 2020;30(2):1243-53. doi: 10.1007/s00330-019-06417-z.


22. Saha A, Bosma JS, Twilt JJ, van Ginneken B, Bjartell A, Padhani AR, et al. Artificial intelligence and radiologists in prostate cancer detection on MRI (PI-CAI): an international, paired, non-inferiority, confirmatory study. Lancet Oncol. 2024;25(7):879-87. doi: 10.1016/s1470-2045(24)00220-1.


23. Hoar D, Lee PQ, Guida A, Patterson S, Bowen CV, Merrimen J, et al. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images. Comput Methods Programs Biomed. 2021;210:106375. doi: 10.1016/j.cmpb.2021.106375.


24. Cao R, Mohammadian Bajgiran A, Afshari Mirak S, Shakeri S, Zhong X, Enzmann D, et al. Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet. IEEE Trans Med Imaging. 2019;38(11):2496-506. doi: 10.1109/tmi.2019.2901928.


Об авторах / Для корреспонденции


А в т о р д л я с в я з и: He Mingze – аспирант третьго года обучения, Институт урологии и репродуктивного здоровья человека, Сеченовский университет, Москва, Россия; e-mail: hemingze97@gmail.com


Похожие статьи


Бионика Медиа