DOI: https://dx.doi.org/10.18565/urology.2022.1.17-22
И.Т. Муркамилов, К.А. Айтбаев, В.В. Фомин, Ж.А. Муркамилова, Ф.А. Юсупов, А.И. Счастливенко
1) Кыргызская государственная медицинская академия им. И. К. Ахунбаева, Бишкек, Кыргызстан; 2) Научно-исследовательский институт молекулярной биологии и медицины, Бишкек, Кыргызстан; 3) ФГАОУ ВО «Первый Московский государственный медицинский университет им. И. М. Сеченова» МЗ России (Сеченовский Университет), Москва, Россия; 4) ГОУ ВПО «Кыргызско-Российский славянский университет», Бишкек, Кыргызстан; 5) Ошский государственный университет, Ош, Кыргызстан; 6Витебский государственный ордена дружбы народов медицинский университет, Витебск, Беларусь
1. Huang Y., Zhang Y.H., Chi Z.P., et al. The Handling of Oxalate in the Body and the Origin of Oxalate in Calcium Oxalate Stones. Urologia Internationalis. 2020;104:3-4:167-176. https://doi.org/10.1159/000504417 2. Batko A.B. Pathological Patterns of the Arterial Hypertension and Urolithiasis. Effective pharmacotherapy. 2019;15:29:12–15. https://doi.org/10.33978/2307-3586-2019-15-29-12-15. (in Russian). 3. Turk C., Knoll T., Petrik A., et al. Clinical recommendations of the EAU for urolithiasis. European Association of Urology. 2011.S. 54. (in Russian) 4. Choi Y.J., Yoon Y., Lee K.Y., et al. Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB J 2014;28:3197–3204. https://doi.org/10.1096/fj.13-247148 5. Prosyannikov M.Y., Anokhin N.V., Golovanov S.A., et al. Urolithiasis and cardiovascular diseases: only a statistical link or a common pathogenetic mechanism? Experimental and Clinical Urology. 2018;3:34–41. (in Russian) 6. Cheungpasitporn W., Thongprayoon C., Mao M.A., et al. The risk of coronary heart disease in patients with kidney stones: a systematic review and meta-analysis. North American journal of medical sciences. 2014;6:11:580–585. https://doi.org/10.4103/1947-2714.145477 7. Raheem O.A., Khandwala Y.S., Sur R.L., et al. Burden of urolithiasis: trends in prevalence, treatments, and costs. European urology focus. 2017;3:1:18–26. 8. Filippova T.V., Svetlichnaya D.V., Rudenko V.I., et al. Genetic aspects of primary hyperoxaluria: diagnostics and treatment. Urology. 2019;5:140-143. https://dx.doi.org/10.18565/urology.2019.5.140–143. 9. KDIGO 2012 Clinical Pracice Guidelines for the Evaluaion and Management of Chronic Kidney Disease. Kidney Int. 2013;3(1):1–163. 10. Hoek F.J., Kemperman F.A., Krediet R.T. A comparison between cystatin C, plasma creatinine and the Cockcroft and Gault formula for the estimation of glomerular fi ltration rate. Nephrol. Dial. Transplant. 2003;18(10):2024–2031. https://doi.org/10.1093/ndt/gfg349 11. Fiev D.N., Khokhalchev S.B., Borisov V.V., et al. Results of analysis of the structural and functional state of the kidneys by the method of mathematical processing of contrast-enhancing MD-CT data in patients with urolithiasis. Urology. 2019;5:72–78.https://dx.doi.org/10.18565/urology.2019.5.72-78 (in Russian) 12. Velkov V.V. Cystatin C and NGAL markers of preclinical renal dysfunction and subclinical acute kidney damage. Laboratory Service. 2015;2:38-43. (in Russian) 13. Kakitapalli Y., Ampolu J., Madasu S.D., Kumar M.S. Detailed Review of Chronic Kidney Disease. Kidney Diseases.2020;6:2:85–91. https://doi.org/10.1159/000504622 14. Miziev I.A., Mahov M.H., Hatshukov A.H., et al. Use of endogenous marker cystatin C for early detection of renal impairment in patients with combined trauma. Urology.2015;1:14–20. (in Russian) 15. van Rijn M.H., Metzger M., Flamant M., et al. Performance of creatinine-based equations for estimating glomerular filtration rate changes over time. Nephrology Dialysis Transplantation. 2020;35:5:819–827. https://doi.org/10.1093/ndt/gfy278 16. Jamshidi P., Najafi F., Mostafaei S., et al. Investigating associated factors with glomerular filtration rate: structural equation modeling. BMC nephrology.2020;21:1:30. https://doi.org/10.1186/s12882-020-1686-2 17. Ren J., Dong X., Nao J. Serum cystatin C is associated with carotid atherosclerosis in patients with acute ischemic stroke. Neurological Sciences.2020;1–8. https://doi.org/10.1007/s10072-020-04383-9 18. Kirkham F.A., Rankin P., Parekh N., et al. Aortic stiffness and central systolic pressure are associated with ambulatory orthostatic BP fall in chronic kidney disease. Journal of nephrology. 2019. С. 1–8. https://doi.org/10.1007/s40620-019-00655-6 19. Luo W., Zhou Y., Gao C., et al. Urolithiasis, Independent of Uric Acid, Increased Risk of Coronary Artery and Carotid Atherosclerosis: A Meta-Analysis of Observational Studies. Biomed Res Int. 2020;2020:1026240. Published 2020 Feb 20. https://doi.org/10.1155/2020/1026240 20. Statsenko M.E., Derevyanchenko M.V. The state of the main arteries, vascular age in patients with arterial hypertension and obesity: the role of leptin and adiponectin. Russian Journal of Cardiology. 2019;(1):7–11. https://doi.org/10.15829/1560-4071-2019-1-7-11 (in Russian). 21. Fabris A., Ferraro P.M., Comellato G., et al. The relationship between calcium kidney stones, arterial stiffness and bone density: unraveling the stone-bone-vessel liaison. J Nephrol 2015;28:549. https://doi.org/10.1007/s40620-014-0146-0 22. Hsi R.S., Spieker A.J., Stoller M.L., et al. Coronary Artery Calcium Score and Association with Recurrent Nephrolithiasis: The Multi-Ethnic Study of Atherosclerosis. J Urol 2016;195(4Pt1):971–976. https://doi.org/10.1016/j.juro.2015.10.001
А в т о р д л я с в я з и: И. Т. Муркамилов – к.м.н., и.о. доцента кафедры факультетской терапии КГМА им. И. К. Ахунбаева, председатель правления Общества специалистов по хронической болезни почек Киргизии, и.о. доцента кафедры терапии ГОУ ВПО «КРСУ им. Б.Н. Ельцина», Бишкек, Кыргызстан; e-mail: murkamilov.i@mail.ru