DOI: https://dx.doi.org/10.18565/urology.2022.5.64-70
С.В. Вовденко, А.О. Морозов, С.Т. Авраамова, Н.С. Александров, Н.В. Жарков, В.С. Саенко, E.A. Коган, Е.А. Безруков
1) Институт урологии и репродуктивного здоровья человека ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия; 2) Институт клинической морфологии и цифровой патологии ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия
1. Loeb S. и др. Over diagnosis and over treatment of prostate cancer. EurUrol. Elsevier, 2014;65(6):1046–1055. 2. Catalona W.J. Prostate Cancer Screening. Medical Clinics of North America. W.B. Saunders, 2018;102(2):199–214. 3. Hanahan D., Weinberg R.A. Hallmarks of cancer: then extgeneration. Cell. Cell. 2011;144(5):646–674. 4. Pertega-Gomes N. et al. Aglycolyticphenotype is associated with prostate cancer progression and aggressiveness: A role for monocarboxylate transporters as metabolic targets for therapy. J Pathol. John Wiley and Sons Ltd. 2015;236(4):517–530. 5. Pértega-Gomes N., Baltazar F. Lactate transporters in the context of prostate cancer metabolism: What do we know? International Journal of Molecular Sciences. MDPI AG, 2014;15(10):18333–18348. 6. Costello L.C. et al. Role of zinc in the pathogenesis and treatment of prostate cancer: Critical issues to resolve. Prostate Cancer Prostatic Dis. Prostate Cancer Prostatic Dis, 2004;7(2):111–117. 7. Costello L.C., Franklin R.B., Feng P. Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion. Mitochondrion. 2005;5,(3):143–153. 8. Pértega-Gomes N., Baltazar F. Lactate transporters in the context of prostate cancer metabolism: What do we know? International Journal of Molecular Sciences. MDPI AG, 2014;15(10):18333–18348. 9. Franklin R.B., Costello L.C. Zinc as an anti-tumor agent in prostate cancer and in other cancers. Arch Biochem Biophys. 2007;463(2):211–217. 10. Franz M.C. et al. Zinc transporters in prostate cancer. Molecular Aspects of Medicine. Mol Aspects Med. 2013;34(2–3):735–741. 11. Fraum T.J. et al. Prostate cancer PET tracers: Essentials for the urologist. Can J Urol. 2018;25(4):9371–9383. 12. Elia I. et al. Organ-specific cancer metabolism and its potential for therapy. Handbook of Experimental Pharmacology. Springer New York LLC. 2016;233:321–353. 13. Hao J. et al. Co-expression of CD147 (EMMPRIN), CD44v3-10, MDR1 and monocarboxylate transporters is associated with prostate cancer drug resistance and progression. Br. J. Cancer. 2010;103(7):1008–1018. 14. Pértega-Gomes N. идр. Monocarboxylate transporter 4 (MCT4) and CD147 overexpression is associated with poor prognosis in prostate cancer. BMC Cancer. BioMed Central Ltd., 2011;11. 15. Fiaschi T. et al. Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res. Cancer Res. 2012;72(19):5130–5140. 16. Sanità P. et al. Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer. BMC Cancer. 2014;14(1). 17. Pértega-Gomes N. et al. A lactate shuttle system between tumour and stromal cells is associated with poor prognosis in prostate cancer. BMC Cancer. BioMed Central Ltd., 2014;14(1).
А в т о р д л я с в я з и: С. В. Вовденко – аспирант Института урологии и репродуктивного здоровья человека ФГАОУ ВО «Первый МГМУ им. И.М. Сеченова» Минздрава России (Сеченовский Университет), Москва, Россия; e-mail: vovdenkostanislav@yandex.ru